Лекции по математике, том 1-4 - Босс В.

Название: Лекции по математике - Том 1-4. 2004, 2005.

Автор: Босс В.

   Книги отличаются краткостью и прозрачностью изложения, вплоть до объяснений "на пальцах". Объяснения даются "человеческим языком" -- лаконично и доходчиво. Значительное внимание уделяется мотивации результатов и прикладным аспектам. Даже в устоявшихся темах ощущается свежий взгляд, в связи с чем преподаватели найдут для себя немало интересного. Книги легко читаются.
   Для студентов, преподавателей, инженеров и научных работников.

Лекции по математике - Том 1-4 - Босс В.



Том 1.   Анализ.

Оглавление
Предисловие 7
Глава 1. Предварительные сведения 9
1.1. Комбинаторика 9
1.2. Бином Ньютона 11
1.3. Многочлены 11
1.4. Комплексные числа 14
1.5. Показательная и логарифмическая функции 16
1.6. Множества 17
Часть I
Анализ 19
Глава 2. Последовательности и пределы 20
2.1. Стартовые понятия 20
2.2. Теорема о трех собачках 22
2.3. Критерий Коши 23
2.4. Число е и другие пределы 26
2.5. Леммы Больцано—Вейерштрасса и Гейне—Бореля . . 28
2.6. Предел функции 30
2.7. Непрерывность 33
2.8. Числовые ряды 35
2.9. Гипноз и математика 39
Глава 3. Дифференцирование 41
3.1. Производная 41
3.2. Правила дифференцирования 44
3.3. Зачем нужны производные 46
3.4. Вывод формул 47
3.5. Дифференциалы 49
3.6. Теоремы о среднем 51
3.7. Формула Тэйлора 54
3.8. Монотонность, выпуклость, экстремумы 56
3.9. Дифференциальные уравнения 59
3.10. Раскрытие неопределенностей 61
3.11. Контрпримеры 64
Глава 4. Функции n переменных 66
4.1. Пространство n измерений 66
4.2. Подводные рифы многомерности 68
4.3. Предел и непрерывность 69
4.4. Повторные пределы 71
4.5. Частные производные и дифференциал 74
4.6. Дифференциалы высших порядков и ряд Тэйлора ... 76
4.7. Градиент 77
4.8. Теорема о среднем 79
4.9. Векторнозначные функции 79
4.10. Линейный анализ 81
4.11. Эквивалентные нормы 84
4.12. Принцип сжимающих отображений 86
4.13. Неподвижные точки разрывных операторов 87
4.14. Дифференцирование оператора 88
4.15. Обратные и неявные функции 90
4.16. Оптимизация 92
4.17. Множители Лагранжа 95
Глава 5. Интегрирование 99
5.1. Определения и общая картина 99
5.2. Уточнения и формальности 104
5.3. Теоремы о среднем 107
5.4. Приемы интегрирования 108
5.5. Дифференциальные уравнения ПО
5.6. Несобственные интегралы 113
5.7. Интегралы, зависящие от параметра 118
5.8. Двойные интегралы 120
5.9. Кратные интегралы 124
5.10. Механические задачи 126
Глава 6. Функциональные ряды 129
6.1. Равномерная сходимость 129
6.2. Степенные ряды 131
6.3. Ортогональные разложения 133
6.4. Ряды Фурье 136
6.5. Интеграл Фурье 139
Часть II
Обзоры и дополнения 141
Глава 7. Элементы векторного анализа 142
7.1. Координаты и ориентация , 142
7.2. Векторное произведение 144
7.3. Кинематика 147
7.4. Дивергенция 149
7.5. Оператор Гамильтона 153
7.6. Циркуляция 154
Глава 8. От числа к функциональному пространству 159
8.1. Вещественные числа 159
8.2. Проблемы бесконечности 161
8.3. Характеризация множеств 163
8.4. Мера Лебега 167
8.5. Аксиома выбора 170
8.6. Функциональные пространства 173
8.7. Теорема Жордана и парадокс Брауэра 177
Глава 9. Топология и неподвижные точки 179
9.1. Идеология окутывания 179
9.2. Гомотопные векторные поля 181
9.3. Основные теоремы 182
9.4. Разрешимость уравнений 183
9.5. Ориентация 184
9.6. Индексы и алгебраическое число нулей 186
9.7. Нечетные поля 187
9.8. Собственные векторы 188
9.9. Обратные и неявные функции 189
Глава 10. Аналитические функции 191
10.1. О загадке комплексных чисел 191
10.2. Дифференцируемость 193
10.3. Элементарные свойства 195
10.4. Контурные интегралы 198
10.5. Интеграл Коши 201
10.6. Регулярность 203
10.7. Аналитическое продолжение 204
10.8. Многозначные функции 206
10.9. Об остальном 207
Обозначения 209
Предметный указатель 211

 

Том 2.   Дифференциальные уравнения.

Оглавление
Предисловие 7
Глава 1. Вспомогательный материал 8
1.1. Пространство п измерений 8
1.2. Линейные функции и матрицы 10
1.3. Прямоугольные матрицы 13
1.4. Квадратичные формы 14
1.5. Нормы в Rn 15
1.6. Функции и пространства 16
1.7. Принцип сжимающих отображений 17
Часть I
ОСНОВЫ ТЕОРИИ 19
Глава 2. Общая картина и опорные точки 20
2.1. Объект изучения 20
2.2. Простейшие уравнения и примеры 23
2.3. Существование и единственность 29
2.4. Продолжимость и зависимость от параметра 33
2.5. О структуре и направлениях 36
2.6. Движение по градиенту 41
2.7. Уравнения с частными производными 42
2.8. Об уравнениях первого порядка 45
Глава 3. Линейные уравнения 50
3.1. Исходные понятия 50
3.2. Принципы суперпозиции 52
3.3. Уравнения с постоянными коэффициентами 55
3.4. Системы уравнений 57
3.5. Случай равных корней 58
3.6. Неоднородные уравнения 62
3.7. Матричная экспонента 63
3.8. Теорема Лиувилля 67
3.9. Неавтономные системы 68
3.10. Фрагмент из обобщенных функций 70
3.11. Функция Грина и краевые задачи 74
3.12. Операционное исчисление 78
Глава 4. Устойчивость 81
4.1. Основные понятия 81
4.2. Второй метод Ляпунова 84
4.3. Неавтономный случай 88
4.4. Уравнение в вариациях 89
4.5. Обратные теоремы 92
4.6. Устойчивость в целом 94
4.7. Диссипативные системы 96
4.8. Проблема Рауса—Гурвица 97
4.9. Линейные неавтономные системы 99
Глава 5. Колебания 101
5.1. Гармонические сигналы 101
5.2. Вынужденные колебания . ., 103
5.3. Резонансные явления 106
5.4. Связанные системы 109
5.5. Автоколебания 112
5.6. Нелинейный маятник 115
5.7. Волны и солитоны 118
Глава 6. Возмущения и бифуркации 122
6.1. Примеры и предостережения 122
6.2. Бифуркации 123
6.3. Катастрофы 125
6.4. Структурная устойчивость 126
6.5. Парадокс Циглера 129
6.6. Методы усреднения 130
Глава 7. Аттракторы и хаос 135
7.1. Эргодичность и перемешивание 135
7.2. Ликвидация противоречий 138
7.3. Адиабатические процессы 140
7.4. Аттракторы и фракталы 143
7.5. Странный аттрактор Лоренца 146
7.6. Сложное в простом 147
Часть II
Дополнения и приложения 150
Глава 8. Теория регулирования 152
8.1. Практические задачи и примеры 152
8.2. Передаточные функции 154
8.3. О подводных рифах 156
8.4. Частотные методы 157
8.5. Задача компенсации 159
8.6. Управляемость 161
Глава 9. Механика 164
9.1. Обобщенные координаты и силы 164
9.2. Уравнения Лагранжа 168
9.3. Формализм Гамильтона 169
9.4. Вариационные принципы 171
9.5. Инвариант Пуанкаре—Картана 172
9.6. Завершение картины 174
Глава 10. Конусные методы 177
10.1. Полуупорядоченность 178
10.2. Монотонность оператора сдвига 178
10.3. Гетеротонные системы 182
10.4. Дифференциальные неравенства 183
10.5. Супероднородность 184
10.6. Примеры 186
10.7. Матричный конус 187
Глава 11. Коллективное поведение 189
11.1. Содержательные примеры 189
11.2. Формальная модель 190
11.3. Системы с ограниченным взаимодействием 193
11.4. Гомогенные системы 195
Обозначения 197
Литература 199
Предметный указатель 201

Том 3.   Линейная алгебра.

Оглавление
Предисловие к «Лекциям» 7
Предисловие к тому 9
Глава 1. Аналитическая геометрия 10
1.1. Координаты и векторы 10
1.2. Описание геометрических объектов 15
1.3. Векторное произведение 19
1.4. Определители 22
1.5. Матрицы и преобразования 23
1.6. Прямые и плоскости 29
1.7. Геометрические задачи 32
1.8. Кривые и поверхности второго порядка 35
Глава 2. Векторы и матрицы 38
2.1. Примеры линейных задач 38
2.2. Векторы 39
2.3. Распознавание образов 43
2.4. Линейные отображения и матрицы .< 45
2.5. Прямоугольные и клеточные матрицы 49
2.6. Два примера 51
2.7. Элементарные преобразования 52
2.8. Теория определителей 57
2.9. Системы уравнений 62
2.10. Задачи и дополнения 65
Глава 3. Линейные преобразования 66
3.1. Замена координат 66
3.2. Собственные значения и комплексные пространства 68
3.3. Собственные векторы 72
3.4. Эскиз спектральной теории 74
3.5. Линейные пространства 76
3.6. Манипуляции с подпространствами 78
3.7. Задачи и дополнения 80
Глава 4. Квадратичные формы 81
4.1. Квадратичные формы 81
4.2. Положительная определенность 86
4.3. Инерция и сигнатура 89
4.4. Условный экстремум 90
4.5. Сингулярные числа 91
4.6. Биортогональные базисы 92
4.7. Сопряженное пространство 94
4.8. Преобразования и тензоры 98
4.9. Задачи и дополнения 100
Глава 5. Канонические представления 103
5.1. Унитарные матрицы 103
5.2. Триангуляция Шура 105
5.3. Жордановы формы 108
5.4. Аннулирующий многочлен 112
5.5. Корневые подпространства ИЗ
5.6. Теорема Гамильтона—Кэли 117
5.7. А-матрицы 118
5.8. Задачи и дополнения 120
Глава 6. Функции от матриц 123
6.1. Матричные ряды 123
6.2. Нормы векторов и матриц 125
6.3. Спектральный радиус 130
6.4. Сходимость итераций 131
6.5. Функции как ряды 132
6.6. Матричная экспонента 133
6.7. Конечные алгоритмы 135
6.8. Задачи и дополнения 138
Глава 7. Матричные уравнения 140
7.1. Типичные задачи 140
7.2. Кронекерово произведение 141
7.3. Уравнения 143
Глава 8. Неравенства 147
8.1. Теоремы об альтернативах 147
8.2. Выпуклые множества и конусы 149
8.3. Теоремы о пересечениях 152
8.4. Р-матрицы 153
8.5. Линейное программирование 156
8.6. Задачи и дополнения 161
Глава 9. Положительные матрицы 162
9.1. Полуупорядоченность и монотонность 162
9.2. Теорема Перрона 163
9.3. Неразложимость 168
9.4. Положительная обратимость 170
9.5. Оператор сдвига и устойчивость 172
9.6. Импримитивность 176
9.7. Стохастические матрицы 177
9.8. Конус положительно определенных матриц 179
9.9. Задачи и дополнения 180
Глава 10. Численные методы 182
10.1. Предмет изучения 182
10.2. Ошибки счета и обусловленность 184
10.3. Оценки сверху и по вероятности 187
10.4. Возмущения спектра 188
10.5. Итерационные методы 191
10.6. Вычисление собственных значений 194
Глава 11. Сводка основных определений и результатов 196
11.1. Аналитическая геометрия 196
11.2. Векторы и матрицы 200
11.3. Линейные преобразования 205
11.4. Квадратичные формы 208
11.5. Канонические представления 210
11.6. Функции от матриц 211
11.7. Неравенства 213
11.8. Положительные матрицы 214
Обозначения 216
Литература 218
Предметный указатель 219

 

 

Том 4.   Вероятность. Информация. Статистика.

Оглавление
Предисловие к «Лекциям» 7
Предисловие к тому 9
Глава 1. Основы в задачах и парадоксах 10
1.1. Что такое вероятность 10
1.2. Подводные рифы статистики 13
1.3. Комбинаторика 14
1.4. Условная вероятность 16
1.5. Случайные величины 19
1.6. Континуальные пространства 23
1.7. Независимость 28
1.8. Дисперсия и ковариация 29
1.9. Неравенства 31
1.10. Случайные векторы 34
1.11. Вероятностные алгоритмы 36
1.12. Об истоках 37
1.13. Задачи и дополнения 40
Глава 2. Функции распределения 43
2.1. Основные стандарты 43
2.2. Дельта-функция 47
2.3. Функции случайных величин 49
2.4. Условные плотности 51
2.5. Характеристические функции 54
2.6. Производящие функции 57
2.7. Нормальный закон распределения 59
2.8. Пуассоновские потоки 62
2.9. Статистики размещений 65
2.10. Распределение простых чисел 66
2.11. Задачи и дополнения 68
Глава 3. Законы больших чисел 71
3.1. Простейшие варианты 71
3.2. Усиленный закон больших чисел 73
3.3. Нелинейный закон больших чисел 75
3.4. Оценки дисперсии 77
3.5. Доказательство леммы 3.4.1 79
3.6. Задачи и дополнения 81
Глава 4. Сходимость 84
4.1. Разновидности 84
4.2. Сходимость по распределению 87
4.3. Комментарии 88
4.4. Закон «нуля или единицы» 90
4.5. Случайное блуждание 91
4.6. Сходимость рядов 93
4.7. Предельные распределения 94
4.8. Задачи и дополнения 96
Глава 5. Марковские процессы 99
5.1. Цепи Маркова 99
5.2. Стохастические матрицы 101
5.3. Процессы с непрерывным временем 103
5.4. О приложениях 105
Глава 6. Случайные функции 107
6.1. Определения и характеристики 107
6.2. Эргодичность 109
6.3. Спектральная плотность 111
6.4. Белый шум 113
6.5. Броуновское движение 114
6.6. Дифференцирование и интегрирование 116
6.7. Системы регулирования 118
6.8. Задачи и дополнения 119
Глава 7. Прикладные области 120
7.1. Управление запасами 120
7.2. Страховое дело 121
7.3. Закон арксинуса 122
7.4. Задача о разорении 124
7.5. Игра на бирже и смешанные стратегии 126
7.6. Процессы восстановления 128
7.7. Стохастическое агрегирование 129
7.8. Агрегирование и СМО 133
7.9. Принцип максимума энтропии 134
7.10. Ветвящиеся процессы 137
7.11. Стохастическая аппроксимация 139
Глава 8. Теория информации 141
8.1. Энтропия 141
8.2. Простейшие свойства 144
8.3. Информационная точка зрения 145
8.4. Частотная интерпретация 147
8.5. Кодирование при отсутствии помех 149
8.6. Проблема нетривиальных кодов 152
8.7. Канал с шумом 153
8.8. Укрупнение состояний 157
8.9. Энтропия непрерывных распределений 158
8.10. Передача непрерывных сигналов 160
8.11. Оптимизация и термодинамика 163
8.12. Задачи и дополнения 166
Глава 9. Статистика 169
9.1. Оценки и характеристики 169
9.2. Теория и практика 173
9.3. Большие отклонения 174
9.4. От «хи-квадрат» до Стьюдента 176
9.5. Максимальное правдоподобие 177
9.6. Парадоксы * 179
Глава 10. Сводка основных определений и результатов 183
10.1. Основные понятия 183
10.2. Распределения 187
10.3. Законы больших чисел 191
10.4. Сходимость 192
10.5. Марковские процессы 195
10.6. Случайные функции и процессы 196
10.7. Теория информации 199
10.8. Статистика 204
Сокращения и обозначения 207
Литература 209
Предметный указатель 211



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Лекции по математике, том 1-4 - Босс В. - fileskachat.com, быстрое и бесплатное скачивание.

Скачать zip
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу



Скачать книгу Лекции по математике - Том 1-4 - Босс В. - depositfiles

Скачать книгу Лекции по математике - Том 1-4 - Босс В. - letitbit

Дата публикации:





Теги: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2024-11-04 13:53:23