уравнения

Введение в численные методы, Самарский А.А.

Введение в численные методы, Самарский А.А.

Книга написана на основе курса лекций, читавшихся автором па факультете вычислительной математики и кибернетики МГУ, и предназначается для ознакомления с началами численных методов. Теория численных методов излагается с использованием элементарных математических средств, а для иллюстрации качества методов используются простейшие математические модели. В книге рассматриваются разностные уравнения, численные методы решения обыкновенных дифференциальных уравнений, линейных и нелинейных алгебраических уравнений, разностные методы для уравнений в частных производных. Для студентов факультетов и отделений прикладной математики вузов.

Введение в численные методы, Самарский А.А.
Скачать и читать Введение в численные методы, Самарский А.А.
 

Решение уравнений и неравенств, теория и практика, Рождественский В.В., 2000

Решение уравнений и неравенств, Теория и практика, Рождественский В.В., 2000.

В книге описана методика решения уравнений и неравенств, называемая эквивалентными преобразованиями. Акцентируются те положения теории, недостаточное знание которых приводит к ошибкам в решении задач. Описаны приемы, позволяющие существенно сократить время решения, что крайне важно на вступительных экзаменах в ВУЗы. Приведены примеры уравнений, неравенств и систем, предлагавшихся на экзаменах в МГУ с 1977 года. Для учителей и учащихся, готовящихся к вступительным экзаменам.

Решение уравнений и неравенств, Теория и практика, Рождественский В.В., 2000
Скачать и читать Решение уравнений и неравенств, теория и практика, Рождественский В.В., 2000
 

Симметрические уравнения, Белый Е.К., 2021

Симметрические уравнения, Белый Е.К., 2021.

Учебное пособие позволит освоить эффективные методы решения систем не только симметрических алгебраических уравнений, но и целого класса других уравнений, сводящихся к симметрическим. Большая часть материала доступна ученику девятого класса.

Симметрические уравнения, Белый Е.К., 2021
Скачать и читать Симметрические уравнения, Белый Е.К., 2021
 

Уравнения, Лекции для старшеклассников и абитуриентов, Шабунин М., 2005

Уравнения, Лекции для старшеклассников и абитуриентов, Шабунин М., 2005.

В данном пособии представлены наиболее важные темы для абитуриентов: решение иррациональных, показательных и логарифмических уравнений, взятых из практики вступительных экзаменов в вузы.

Уравнения, Лекции для старшеклассников и абитуриентов, Шабунин М., 2005
Скачать и читать Уравнения, Лекции для старшеклассников и абитуриентов, Шабунин М., 2005
 

Уравнения математической физики, Соболев С.Л., 1992

Уравнения математической физики, Соболев С.Л., 1992.

Рассмотрены основные вопросы, относящиеся к теории уравнений математической физики и отвечающие программе изучения данной дисциплины на факультетах математики и прикладной математики университетов. Изложение материала ведется с широким применением методов функционального анализа.

Уравнения математической физики, Соболев С.Л., 1992
Скачать и читать Уравнения математической физики, Соболев С.Л., 1992
 

Случайные уравнения, Кириллов П.В., 1982

Случайные уравнения, Кириллов П.В., 1982.

Работа посвящена изучение различных классов случайных уравнений, возникающих в науке и технике. С единой точки зрения рассматриваются случайные дифференциальные, интегральные, алгебраические, разностные уравнения и уравнения с частными производными. Описываются общие подходы и методы решения случайных уравнений. Доказываются существование, единственность и измеримость решений, вычисляются вероятностные характеристики,приводятся примеры. Книга будет полезна научным работникам, занимающимся математикой, аспирантам, студентам, а также всем тем, кто интересуется приложением вероятностно-статистических методов.

Случайные уравнения, Кириллов П.В., 1982
Скачать и читать Случайные уравнения, Кириллов П.В., 1982
 

Составление дифференциальных уравнений, Пономарев К.К., 1973

Составление дифференциальных уравнений, Пономарев К.К., 1973.

Учебное пособие для студентов математических, физических, биологических, геофизических факультетов университетов и педагогических институтов. Может служить руководством по составлению обыкновенных дифференциальных уравнений, а также простейших уравнений с частными производными.

Составление дифференциальных уравнений, Пономарев К.К., 1973
Скачать и читать Составление дифференциальных уравнений, Пономарев К.К., 1973
 

Обыкновенные дифференциальные уравнения, Арнольд В.И., 2014

Обыкновенные дифференциальные уравнения, Арнольд В.И., 2014.

За сорок лет, прошедших со времени выхода первого издания, этот учебник успел стать классическим. Большое внимание уделяется геометрическому смыслу основных понятий. В книге прослеживается тесная связь предмета с приложениями, в особенности с механикой. При изложении делается упор не на формулы, а на геометрический смысл основных определений и теорем. Автор знакомит читателя с такими понятиями, как многообразия, однопараметрические группы диффеоморфизмов, касательные пространства и расслоения. В число рассматриваемых примеров из механики входит исследование фазовых портретов консервативных систем с одной степенью свободы, теория малых колебаний, параметрический резонанс. Книга предназначена для студентов и аспирантов математических факультетов университетов и вузов с расширенной программой по математике.

Обыкновенные дифференциальные уравнения, Арнольд В.И., 2014
Скачать и читать Обыкновенные дифференциальные уравнения, Арнольд В.И., 2014
 
Показана страница 2 из 8