Вычислительная теплопередача, Самарский А.А., Вабищевич П.Н., 2003.
Книга посвящена методам исследования проблем теплопередачи современными численными методами. Описаны основные подходы к аналитическому исследованию математических моделей теплопередачи традиционными средствами прикладной математики. Рассматриваются численные методы приближенного решения стационарных и нестационарных многомерных задач теплопроводности. Большое внимание уделяется задачам с фазовыми превращениями, задачам термоупругости и теплообмена излучением; процессам тепло- и массопереноса. Обсуждаются проблемы управления и оптимизации тепловых процессов. Рассмотрены вопросы численного решения обратных задач теплообмена. Приведены примеры решения различных двумерных задач теплопередачи с программами для ЭВМ.
Книга рассчитана на студентов и аспирантов факультетов прикладной математики вузов, специалистов по прикладному математическому моделированию.
Самарский
Вычислительная теплопередача, Самарский А.А., Вабищевич П.Н., 2003
Скачать и читать Вычислительная теплопередача, Самарский А.А., Вабищевич П.Н., 2003Задачи и упражнения по численным методам, Самарский А.А., Вабищевич П.Н., Самарская Е.А., 2000
Задачи и упражнения по численным методам, Самарский А.А., Вабищевич П.Н., Самарская Е.А., 2000.
Учебное пособие поддерживает курс по численным методам, который читается в вузах с повышенной математической подготовкой. Задачи и упражнения охватывают все основные разделы численного анализа: интерполирование функций, численное интегрирование, прямые и итерационные методы линейной алгебры, спектральные задачи, системы нелинейных уравнений, задачи минимизации функций, интегральные уравнения, краевые задачи и задачи с начальными данными для обыкновенных уравнений и уравнений с частными производными. Каждый раздел содержит небольшой справочный материал, упражнения (задачи с решениями) и набор задач для самостоятельной работы.
Книга рассчитана на студентов университетов и вузов, обучающихся по специальности «Прикладная математика».
Скачать и читать Задачи и упражнения по численным методам, Самарский А.А., Вабищевич П.Н., Самарская Е.А., 2000Учебное пособие поддерживает курс по численным методам, который читается в вузах с повышенной математической подготовкой. Задачи и упражнения охватывают все основные разделы численного анализа: интерполирование функций, численное интегрирование, прямые и итерационные методы линейной алгебры, спектральные задачи, системы нелинейных уравнений, задачи минимизации функций, интегральные уравнения, краевые задачи и задачи с начальными данными для обыкновенных уравнений и уравнений с частными производными. Каждый раздел содержит небольшой справочный материал, упражнения (задачи с решениями) и набор задач для самостоятельной работы.
Книга рассчитана на студентов университетов и вузов, обучающихся по специальности «Прикладная математика».
Численные методы, Самарский Л.А., Гулин А.В., 1989
Численные методы, Самарский Л.А., Гулин А.В., 1989.
Излагаются основные принципы построения и исследования численных методов решения на ЭВМ различных классов математических задач. Наряду с традиционными разделами, такими как интерполирование, численное интегрирование, методы решения задачи Коши для обыкновенных дифференциальных уравнений, большое место в книге занимают разностные методы для уравнений в частных производных и итерационные методы решения сеточных уравнений.
Для студентов, обучающихся по специальности «Прикладная математика» и «Физика», а также для широкого круга специалистов, применяющих ЭВМ для научных расчетов.
Скачать и читать Численные методы, Самарский Л.А., Гулин А.В., 1989Излагаются основные принципы построения и исследования численных методов решения на ЭВМ различных классов математических задач. Наряду с традиционными разделами, такими как интерполирование, численное интегрирование, методы решения задачи Коши для обыкновенных дифференциальных уравнений, большое место в книге занимают разностные методы для уравнений в частных производных и итерационные методы решения сеточных уравнений.
Для студентов, обучающихся по специальности «Прикладная математика» и «Физика», а также для широкого круга специалистов, применяющих ЭВМ для научных расчетов.
Численные методы решения задач конвекции-диффузии, Самарский А.А., Вабищевич П.Н., 2015
Численные методы решения задач конвекции-диффузии, Самарский А.А., Вабищевич П.Н., 2015.
В книге рассматриваются основные проблемы приближенного решения задач конвекции-диффузии численными методами. Дискретные модели получены на основе конечно-разностных и конечно-элементных аппроксимаций. Строятся монотонные разностные схемы для задач с дивергентным и недивергентным конвективным переносом. Для приближенного решения сеточных несамосопряженных эллиптических задач используются итерационные методы. На основе общей теории устойчивости (корректности) операторно-разностных схем исследуются нестационарные задачи конвекции-диффузии. Обсуждаются также возможности применения аддитивных разностных схем с расщеплением по пространственным переменным. Книга рассчитана на специалистов по вычислительным методам математической физики, математическому моделированию в механике сплошных сред. Материал доступен студентам старших курсов технических вузов.
Скачать и читать Численные методы решения задач конвекции-диффузии, Самарский А.А., Вабищевич П.Н., 2015В книге рассматриваются основные проблемы приближенного решения задач конвекции-диффузии численными методами. Дискретные модели получены на основе конечно-разностных и конечно-элементных аппроксимаций. Строятся монотонные разностные схемы для задач с дивергентным и недивергентным конвективным переносом. Для приближенного решения сеточных несамосопряженных эллиптических задач используются итерационные методы. На основе общей теории устойчивости (корректности) операторно-разностных схем исследуются нестационарные задачи конвекции-диффузии. Обсуждаются также возможности применения аддитивных разностных схем с расщеплением по пространственным переменным. Книга рассчитана на специалистов по вычислительным методам математической физики, математическому моделированию в механике сплошных сред. Материал доступен студентам старших курсов технических вузов.
Введение в численные методы, Самарский А.А.
Введение в численные методы, Самарский А.А.
Книга написана на основе курса лекций, читавшихся автором па факультете вычислительной математики и кибернетики МГУ, и предназначается для ознакомления с началами численных методов. Теория численных методов излагается с использованием элементарных математических средств, а для иллюстрации качества методов используются простейшие математические модели. В книге рассматриваются разностные уравнения, численные методы решения обыкновенных дифференциальных уравнений, линейных и нелинейных алгебраических уравнений, разностные методы для уравнений в частных производных. Для студентов факультетов и отделений прикладной математики вузов.
Скачать и читать Введение в численные методы, Самарский А.А.Книга написана на основе курса лекций, читавшихся автором па факультете вычислительной математики и кибернетики МГУ, и предназначается для ознакомления с началами численных методов. Теория численных методов излагается с использованием элементарных математических средств, а для иллюстрации качества методов используются простейшие математические модели. В книге рассматриваются разностные уравнения, численные методы решения обыкновенных дифференциальных уравнений, линейных и нелинейных алгебраических уравнений, разностные методы для уравнений в частных производных. Для студентов факультетов и отделений прикладной математики вузов.
Математическое моделирование, Процессы в нелинейных средах, Самарский А.А., Курдюмов С.П., 1986
Математическое моделирование, Процессы в нелинейных средах, Самарский А.А., Курдюмов С.П., 1986.
В сборнике рассмотрены наиболее интересные математические модели сложных нелинейных явлений в физике, технике, химии, биологии. Изложена современная методика их анализа. Статьи написаны ведущими специалистами по математической физике и биофизике, теории дифференциальных уравнений, общей теории численных методов и алгоритмов, численному исследованию прикладных задач механики и физики плазмы.
Сборник предназначен для специалистов в области прикладной математики, математической физики и математического моделирования на ЭВМ, а также для аспирантов соответствующих специальностей.
Скачать и читать Математическое моделирование, Процессы в нелинейных средах, Самарский А.А., Курдюмов С.П., 1986В сборнике рассмотрены наиболее интересные математические модели сложных нелинейных явлений в физике, технике, химии, биологии. Изложена современная методика их анализа. Статьи написаны ведущими специалистами по математической физике и биофизике, теории дифференциальных уравнений, общей теории численных методов и алгоритмов, численному исследованию прикладных задач механики и физики плазмы.
Сборник предназначен для специалистов в области прикладной математики, математической физики и математического моделирования на ЭВМ, а также для аспирантов соответствующих специальностей.
Задачи и упражнения по численным методам, Самарский А.А., Вабищевич П.Н., Самарская Е.А., 2000
Задачи и упражнения по численным методам, Самарский А.А., Вабищевич П.Н., Самарская Е.А., 2000.
Учебное пособие поддерживает курс по численным методам, который читается в вузах с повышенной математической подготовкой. Задачи и упражнения охватывают все основные разделы численного анализа: интерполирование функций, численное интегрирование, прямые и итерационные методы линейной алгебры, спектральные задачи, системы нелинейных уравнений, задачи минимизации функций, интегральные уравнения, краевые задачи и задачи с начальными данными для обыкновенных уравнений и уравнений с частными производными. Каждый раздел содержит небольшой справочный материал, упражнения (задачи с решениями) и набор задач для самостоятельной работы.
Книга рассчитана на студентов университетов и вузов, обучающихся по специальности «Прикладная математика».
Скачать и читать Задачи и упражнения по численным методам, Самарский А.А., Вабищевич П.Н., Самарская Е.А., 2000Учебное пособие поддерживает курс по численным методам, который читается в вузах с повышенной математической подготовкой. Задачи и упражнения охватывают все основные разделы численного анализа: интерполирование функций, численное интегрирование, прямые и итерационные методы линейной алгебры, спектральные задачи, системы нелинейных уравнений, задачи минимизации функций, интегральные уравнения, краевые задачи и задачи с начальными данными для обыкновенных уравнений и уравнений с частными производными. Каждый раздел содержит небольшой справочный материал, упражнения (задачи с решениями) и набор задач для самостоятельной работы.
Книга рассчитана на студентов университетов и вузов, обучающихся по специальности «Прикладная математика».
Аддитивные схемы для задач математической физики, Самарский А.А., Вабишевич П.Н., 2001
Аддитивные схемы для задач математической физики, Самарский А.А., Вабишевич П.Н., 2001.
В монографии рассмотрены аддитивные разностные схемы приближенного решения многомерных нестационарных задач для уравнений с частными производными. Выделены классы схем с расщеплением по пространственным переменным (схемы переменных направлений), схемы расщепления по физическим процессам. При использовании компьютеров параллельной архитектуры строятся схемы декомпозиции области - регионально-аддитивные схемы. Рассмотрены безусловно устойчивые аддитивные схемы многокомпонентного расщепления для эволюционных уравнений первого и второго порядков. Материал книги базируется на обшей теории устойчивости (корректности) операторно-разностных схем.
Скачать и читать Аддитивные схемы для задач математической физики, Самарский А.А., Вабишевич П.Н., 2001В монографии рассмотрены аддитивные разностные схемы приближенного решения многомерных нестационарных задач для уравнений с частными производными. Выделены классы схем с расщеплением по пространственным переменным (схемы переменных направлений), схемы расщепления по физическим процессам. При использовании компьютеров параллельной архитектуры строятся схемы декомпозиции области - регионально-аддитивные схемы. Рассмотрены безусловно устойчивые аддитивные схемы многокомпонентного расщепления для эволюционных уравнений первого и второго порядков. Материал книги базируется на обшей теории устойчивости (корректности) операторно-разностных схем.
Другие статьи...
- Сборник задач по математической физике, Будак Б.М., Самарский А.А., Тихонов А.Н., 2004
- Уравнения математической физики, Тихонов А.Н., Самарский А.А., 1999
- Численные методы решения задач конвекции-диффузии, Самарский А.А., Вабищевич П.Н., 2015
- Математическое моделирование, Самарский А.А., Михайлов А.П., 2005
- Математическое моделирование, Самарский А.А., Михайлов А.П., 2002
- Сборник задач по математической физике, учебное пособие, Будак Б.М., Самарский А.А., Тихонов А.Н., 1980
- Компьютеры, модели, вычислительный эксперимент, Самарский А.А., 1988
- Уравнения математической физики, Тихонов А.Н., Самарский А.А.
Самарский
Предыдущая
Следующая
Показана страница 1 из 3