Прасолов

Многочлены, Прасолов В.В., 2003

Многочлены, Прасолов В.В., 2003.

   В книге изложены основные результаты исследований по теории многочленов, как классические, так и современные. Большое внимание уделено 17-й проблеме Гильберта о представлении неотрицательных многочленов суммами квадратов рациональных функций и ее обобщениям. Теория Галуа обсуждается прежде всего с точки зрения теории многочленов, а не с точки зрения общей теории расширения нолей.
Для студентов, аспирантов, научных работников — математиков и физиков.

Многочлены, Прасолов В.В., 2003
Скачать и читать Многочлены, Прасолов В.В., 2003
 

Элементы теории гомологий, Прасолов В.В., 2014

Элементы теории гомологий, Прасолов В.В., 2014.

   Эта книга является непосредственным продолжением книги «Элементы комбинаторной и дифференциальной топологии». Она начинается с определения симплициальных гомологий и когомологий; приводятся многочисленные примеры их вычисления и их приложений. Затем обсуждается умножение Колмогорова—Александера на когомологиях. Значительная часть книги посвящена различным приложениям (симплициальных) гомологий и когомологий. Многие из них связаны с теорией препятствий. Одним из таких примеров служат характеристические классы векторных расслоений. Сингулярные гомологии и когомологии определяются во второй половине книги. Затем рассматривается ещё один подход к построению теории когомологий — когомологии Чеха и тесно связанные с ними когомологии де Рама. Книга завершается различными приложениями теории гомологий в топологии многообразий. В книге приведено много задач (с решениями) и упражнений для самостоятельного решения.
Книга содержит много конкретного материала и приложений, которые могут заинтересовать даже специалистов в этой области.
Для студентов старших курсов и аспирантов математических и физических специальностей; для научных работников.

Элементы теории гомологий, Прасолов В.В., 2014
Скачать и читать Элементы теории гомологий, Прасолов В.В., 2014
 

Задачи и теоремы линейной алгебры, Прасолов В.В., 2008

Задачи и теоремы линейной алгебры, Прасолов В.В., 2008.

Это издание существенно переработано и расширено по сравнению с предыдущим, написанным более 15 лет назад. Добавлена даже целая новая глава, посвящённая некоммутативной линейной алгебре. Добавлены также параграфы, посвящённые ортогональным многочленам, нормированным пространствам, описанию образа полилинейного отображения, теории реплик и элементам теории алгебр Ли, ганкелевым и тёплицевым матрицам, числовому образу оператора. Гораздо более подробно, чем в первом издании, изложена линейная алгебра над конечными полями.

Задачи и теоремы линейной алгебры, Прасолов В.В., 2008
Скачать и читать Задачи и теоремы линейной алгебры, Прасолов В.В., 2008
 

Задачи по стереометрии, Прасолов В.В., 2016

Задачи по стереометрии, Прасолов В.В., 2016.

 В книгу включено около 800 задач по стереометрии, снабжённых подробными решениями. Большинство задач по своей тематике относится к школьной программе. Уровень их трудности в основном несколько выше обычных школьных задач, и есть также некоторое количество весьма трудных задач, предназначенных для учащихся математических классов. Задачи разбиты на циклы, связанные общей идеей решения. Внутри каждого цикла задачи расположены в порядке возрастания трудности. Такое разбиение поможет читателю ориентироваться в большом наборе задач и даст ему возможность разобраться непосредственно в заинтересовавшей его теме, не читая подряд всю книгу.
Для школьников, преподавателей математики, руководителей математических кружков, студентов педагогических институтов и университетов.

Задачи по стереометрии, Прасолов В.В., 2016
Скачать и читать Задачи по стереометрии, Прасолов В.В., 2016
 

Задачи по планиметрии, Прасолов В.В., 2006

Задачи по планиметрии, Прасолов В.В., 2006.

Книга может использоваться в качестве задачника по геометрии для 7—11 классов в сочетании со всеми действующими учебниками по геометрии. В неё включены нестандартные геометрические задачи несколько повышенного по сравнению со школьными задачами уровня. Сборник содержит около 1900 задач с полными решениями и около 150 задач для самостоятельного решения. С помощью этого пособия можно организовать предпрофильную и профильную подготовку по математике, элективные курсы по дополнительным главам планиметрии. Материалы данного пособия полностью покрывают тематику и сложность заданий олимпиад всех уровней и всех видов экзаменов, включая ЕГЭ и вступительные экзамены в вузы. Для школьников, преподавателей математики, руководителей математических кружков, студентов педагогических институтов и университетов.

Задачи по планиметрии, Прасолов В.В., 2006
Скачать и читать Задачи по планиметрии, Прасолов В.В., 2006
 

Задачи по алгебре, арифметике и анализу, Прасолов В.В., 2011

Задачи по алгебре, арифметике и анализу, Прасолов В.В., 2011.

В книгу включены задачи по алгебре, арифметике и анализу, относящиеся к школьной программе, но, в основном, несколько повышенного уровня по сравнению с обычными школьными задачами. Есть также некоторое количество весьма трудных задач, предназначенных для учащихся математических классов. Сборник содержит более 1000 задач с полными решениями. Для школьников, преподавателей математики, руководителей математических кружков, студентов пединститутов. Первое издание книги вышло в 2007 г.

Задачи по алгебре, арифметике и анализу, Прасолов В.В., 2011
Скачать и читать Задачи по алгебре, арифметике и анализу, Прасолов В.В., 2011
 

Задачи по планиметрии, Прасолов В.В., 2003

Задачи по планиметрии, Прасолов В.В., 2003.

  В этом сборнике задач представлены почти все темы планиметрии, которые изучаются в школе, в том числе и в специализированных классах. Его основу составляют задачи, предлагавшиеся в разное время на математических олимпиадах, и задачи из архивов математических олимпиад и математических кружков.

Задачи по планиметрии, Прасолов В.В., 2003
Скачать и читать Задачи по планиметрии, Прасолов В.В., 2003
 

Задачи по планиметрии, Прасолов В.В., 2006

Задачи по планиметрии, Прасолов В.В., 2006.

  Книга может использоваться в качестве задачника по геометрии для 7—11 классов в сочетании со всеми действующими учебниками по геометрии. В неё включены нестандартные геометрические задачи несколько повышенного по сравнению со школьными задачами уровня. Сборник содержит около 1900 задач с полными решениями и около 150 задач для самостоятельного решения.
С помощью этого пособия можно организовать предпрофильную и профильную подготовку по математике, элективные курсы по дополнительным главам планиметрии.
Материалы данного пособия полностью покрывают тематику и сложность заданий олимпиад всех уровней и всех видов экзаменов, включая ЕГЭ и вступительные экзамены в вузы.
Для школьников, преподавателей математики, руководителей математических кружков, студентов педагогических институтов и университетов.

Задачи по планиметрии, Прасолов В.В., 2006
Скачать и читать Задачи по планиметрии, Прасолов В.В., 2006
 
Показана страница 5 из 9