Сверхкороткие импульсы и методы нелинейной оптики, Желтиков А.М., 2006.
Сверхкороткие импульсы электромагнитного излучения, формируемые лазерными источниками, представляют собой интересный физический объект и являются уникальным инструментом для исследования быстропротекающих процессов в физике, химии и биологии. Фемтосекундные лазерные импульсы впервые позволили наблюдать в реальном времени динамику быстропротекающих элементарных молекулярных процессов и получить мгновенные снимки молекул и групп атомов на различных стадиях химических реакций.
Для изучения динамики электронной системы внутри атомов, однако, требуются импульсы с длительностью короче одной фемтосекунды — аттосекундные импульсы. Генерация таких импульсов стала возможной на основе нелинейно-оптических взаимодействий высокоинтенсивных сверхкоротких лазерных импульсов лишь в начале XXI века. Анализ новых тенденций в развитии методов нелинейной оптики и спектроскопии, связанных со стремительным прогрессом в области генерации и усиления сверхкоротких импульсов, составляет предмет настоящей книги.
Для специалистов, исследователей, инженеров, студентов и аспирантов, работающих и специализирующихся в области оптики и лазерной физики, лиц с общим физическим образованием, интересующихся вопросами нелинейной оптики.
Когерентное четырехволновое взаимодействие в широких пучках.
Основные недостатки процедуры поточечного построения двумерных изображений относительных населенностей возбужденных состояний атомов и ионов в плазме связаны с тем, что данный подход требует достаточно большого количества измерений и не обеспечивает разрешения по одной из пространственных координат. Необходимо учитывать также, что одна из основных проблем диагностики лазерной плазмы связана с флуктуациями параметров плазмы от импульса к импульсу. Так как каждый лазерный импульс, по существу, создает новую плазменную среду, любая процедура усреднения приводит к потере полезной информации, которая оказывается особенно важной при исследовании нестационарных процессов в пространственно неоднородной плазме.
Данные недостатки могут быть устранены путем перехода от поточечных измерений к построению изображений целых срезов лазерной плазмы с использованием ЧВВ-сигнала, генерируемого в соответствующей области плазмы при пересечении широких неколлинеарных пучков накачки. Принципиальное преимущество такого подхода связано с тем, что при этом двумерные изображения распределения интенсивности ЧВВ-сигнала могут быть построены за один лазерный импульс. Таким образом, имеется возможность получения мгновенных изображений пространственного распределения частиц в плазме, что позволяют существенно уменьшить потери полезной информации. Получение мгновенных распределений плазменных параметров за один выстрел представляется важным, в частности, для характеризации свойств плазмы в терминах ее статистических параметров, а также для исследования пространственных корреляций флуктуаций параметров плазмы, аналогично методикам, используемым для исследования газовых потоков [15]. Разумеется, использование схем когерентного ЧВВ в широких пучках предполагает достаточный запас по интенсивности сигнала ЧВВ. Как показывают оценки, выполненные в работе [1], такая процедура представляется перспективной для исследования быстро-протекающих пространственно неоднородных процессов в многокомпонентной лазерной плазме.
ОГЛАВЛЕНИЕ.
Предисловие.
Введение.
Список литературы.
Глава 1. Когерентные нелинейно-оптические взаимодействия лазерных импульсов в возбужденных и ионизованных газовых средах.
§1.1. Фундаментальные и прикладные аспекты нелинейной оптики газовых сред.
§1.2. Основные схемы четырехволнового взаимодействия в возбужденных газах и плазме.
1.2.1. Вырожденное четырехволновое взаимодействие (16). 1.2.2. Четырехволновое взаимодействие с комбинационным резонансом (19). 1.2.3. Четырехволновое взаимодействие с гиперкомбинационным резонансом (20). 1.2.4. Генерация третьей гармоники (22).
§1.3. Эффекты фазовой расстройки и однофотонного поглощения при когерентном ЧВВ.
1.3.1. Основные соотношения (24). 1.3.2. Характерные пространственные масштабы задачи (29).
§1.4. Четырехфотонная спектроскопия возбужденных состояний атомов и ионов.
1.4.1. Лазерная плазма (32). 1.4.2. Газоразрядная плазма (35).
§1.5. Поляризационная четырехфотонная спектроскопия и когерентная эллипсометрия атомов и ионов.
1.5.1. Поляризационные свойства сигнала когерентного ЧВВ из плазмы оптического пробоя (40). 1.5.2. Разделение мнимой и действительной части кубической восприимчивости (44). 1.5.3. Анализ близких и перекрывающихся спектральных линий (47). 1.5.4. Поляризационное управление формой спектра ЧВВ (49).
§1.6. Когерентная четырехфотонная спектроскопия автоионизационных состояний.
Список литературы.
Глава 2. Когерентные четырехволновые взаимодействия как метод зондирования пространственных неоднородностей и трехмерной микроскопии.
§2.1. Исследование пространственного распределения атомной и ионной компонент плазмы.
2.1.1. Когерентное четырехволновое взаимодействие в условиях флуктуации параметров среды и накачки (64). 2.1.2. Двумерные изображения пространственных распределений возбужденных атомов и ионов в лазерной плазме (66). 2.1.3. Эффекты фазового рассогласования и однофотонного поглощения (69). 2.1.4. Когерентное четырехволновое взаимодействие в широких пучках (71). 2.1.5. Нелинейно-оптические методы восстановления трехмерных распределений атомов и ионов в лазерной плазме (74).
§2.2. Генерация третьей гармоники в сфокусированных пучках как метод трехмерной микроскопии лазерной плазмы.
2.2.1. Генерация третьей гармоники и нелинейная микроскопия (76). 2.2.2. Физические основы ГТГ-микроскопии (77). 2.2.3. ГТГ микроскопия плазмы (83).
Список литературы.
Глава 3. Распространение и спектрально-временная динамика сверхкоротких импульсов в нелинейной среде.
§3.1. Кросс-модуляционная неустойчивость и эффективное параметрическое преобразование частоты сверхкоротких световых импульсов.
§3.2. Ускорение солитонного сдвига частоты в режиме предельно коротких световых импульсов.
§3.3. Численный анализ распространения и усиления лазерных импульсов длительностью порядка периода светового поля в двухуровневой среде.
Список литературы.
Глава 4. Предельное временное и спектральное разрешение спектроскопии и микроскопии когерентного комбинационного рассеяния сверхкоротких лазерных импульсов.
§4.1. Сверхкороткие импульсы в нелинейной спектроскопии и микроскопии.
§4.2. Импульсы с фазовой модуляцией в когерентном антистоксовом рассеянии света.
§4.3. КАРС-спектроскопия с использованием ФМ-импульсов с переменной задержкой.
§4.4. Спектральное разрешение четырехфотонной спектроскопии с использованием ФМ-импульсов.
§4.5. Импульсы с периодической модуляцией фазы и предельное разрешение КАРС-спектроскопии.
§4.6. Временное разрешение метода КАРС с использованием ФМ-импульсов.
Список литературы.
Глава 5. Фемтосекундная спектроскопия когерентного антистоксова рассеяния света с использованием перестраиваемых по частоте фазово-модулированных импульсов.
§5.1. Источники перестраиваемого излучения для нелинейной спектроскопии.
§5.2. Нелинейная поляризация и сигнал КАРС.
§5.3. Экспериментальная техника.
§5.4. Кросс-корреляционная методика в спектроскопии КАРС.
Список литературы.
Глава 6. Поляризационная нелинейная оптика квадратично-нелинейных материалов.
§6.1. Полимерные материалы для нелинейной оптики.
§6.2. Экспериментальная техника.
§6.3. Методы поляризационной нелинейной оптики и свойства молекулярных диполей в нелинейных полимерных материалах.
Список литературы.
Глава 7. Двухфотонное поглощение сверхкоротких импульсов и квантовое управление светоиндуцируемыми явлениями.
§7.1. Двухфотонное поглощение в поле интерферирующих световых пучков и обратимая лазерная микрообработка материалов.
§7.2. Квантовое управление явлением фотохромизма.
§7.3. Упорядоченные последовательности сверхкоротких лазерных импульсов и когерентное управление.
Список литературы.
Глава 8. Волноводные режимы нелинейно-оптических взаимодействий сверхкоротких лазерных импульсов.
§8.1. Четырехволновое взаимодействие лазерных импульсов в полых волноводах.
8.1.1. Полые волноводы в нелинейной оптике сверхкоротких импульсов (186). 8.1.2. Теория ЧВВ в полых волноводах (188). 8.1.3. Экспериментальная методика (195). 8.1.4. Волноводные моды в когерентном четырехволновом взаимодействии (198).
§8.2. Снижение квантового шума в волноводной когерентной спектроскопии комбинационного рассеяния света.
Список литературы.
Глава 9. Изолированные волноводные моды интенсивных световых полей.
§9.1. Волноводные режимы передачи интенсивного лазерного излучения.
§9.2. Фотонные запрещенные зоны, фотонные кристаллы и уменьшение оптических потерь в полых волноводах.
§9.3. Волноводные моды фотонно-кристаллических волокон с полой сердцевиной.
§9.4. Нелинейно-оптические взаимодействия изолированных волноводных мод интенсивных фемтосекундных импульсов.
§9.5. Самовоздействие субгигаваттных фемтосекундных импульсов.
§9.6. Когерентное возбуждение и зондирование комбинационно-активных колебаний молекул в модах полых фотонно-кристаллических волноводов.
§9.7. Перспективы волноводной нелинейной оптики интенсивных световых полей.
Список литературы.
Глава 10. Нелинейно-оптические взаимодействия в нанокомпозитных материалах.
§10.1. Интерференция рассеянных волн и правила сложения групповых скоростей в нанокомпозитных материалах.
10.1.1. Нанокомпозитные материалы в лазерных технологиях и нелинейной оптике (253). 10.1.2. Слоисто-неоднородный нанокомпозит (254). 10.1.3. Модель Максвелла–Гарнетта (259). 10.1.4. Одномерный фотонный кристалл (260).
§10.2. Генерация гармоник и смешение частоты в полимерных пленках с нелинейными нанокристаллами.
§10.3. Нелинейно-оптическая спектральная интерферометрия наноструктур на основе когерентного антистоксова рассеяния света (нано-КАРС).
10.3.1. Спектроскопия когерентного антистоксова рассеяния света и ее приложения (269). 10.3.2. Интерференционная природа спектров КАРС (270). 10.3.3. Когерентное антистоксово рассеяние света в нанокомпозитной системе (271). 10.3.4. Экспериментальная техника (275).
§10.4. Генерация оптических гармоник при прохождении фемтосекундных импульсов через систему углеродных нанотрубок.
Список литературы.
Заключение.
Купить .
Теги: учебник по физике :: физика :: Желтиков :: оптика
Смотрите также учебники, книги и учебные материалы:
- Физика межпланетного и околоземного пространства, Веселовский И.С., Кропоткин А.П., 2010
- Физика, 10 класс, Уровень стандарта, Коршак Е.В., Ляшенко А.И., Савченко В.Ф., 2010
- Quantum Mechanics, Concepts and Applications, Zettili N., 2009
- Исследование гидродинамической неустойчивости в задачах лазерного термоядерного синтеза методами математического моделирования, Лебо И.Г., Тишкин В.Ф., 2006
- Физика, 10-11 классы, электродинамика, углублённый уровень, Мякишев Г.Я., Синяков А.З., 2021
- Физика, 11 класс, оптика, квантовая физика, углублённый уровень, Мякишев Г.Я., Синяков А.З., 2021
- Физика, 10 класс, механика, углублённый уровень, Мякишев Г.Я., Синяков А.З., 2021
- Физика, 11 класс, колебания и волны, углублённый уровень, Мякишев Г.Я., Синяков А.З., 2021