Геометрия, Готовимся к ЕГЭ, 11 класс, Литвиненко В.Н., 2012.
В пособии после краткого напоминания основных теоретических сведений из курса геометрии 11 класса по каждой теме приведены оригинальные задания на построение в пространстве, обстоятельные решения типовых задач, соответствующих уровню С на ЕГЭ, и задания для самостоятельной работы. Решение задач направлено на неформальное восприятие теоретического материала и способствует развитию пространственных представлений учащихся.
Книга адресована учащимся, изучающим геометрию по учебнику авторов Л. С. Атанасяна и др. как на базовом, так и на профильном уровне и готовящимся к выпускным и вступительным экзаменам.
Координаты точки. Координаты середины отрезка. Длина отрезка.
Проведём через какую-нибудь точку О пространства три попарно перпендикулярные прямые (рис. 22). На каждой из них укажем направление (покажем его стрелкой) и выберем некоторый отрезок в качестве единицы измерения.
Совокупность этих трёх прямых с направлениями на них, их общей точкой и единицей измерения отрезков называют прямоугольной системой координат.
Точка О — это начало системы координат, три указанные прямые с направлением на каждой из них и началом отсчёта — это оси координат. Ось, обозначенная Ох, — ось абсцисс, Оу — ось ординат и Оz — ось аппликат.
Три плоскости, определяемые осями координат, взятыми попарно, — это координатные плоскости Оху, Оуz и Охz.
В прямоугольной системе координат каждой точке М пространства ставится в соответствие тройка чисел. Эти числа называют координатами точки М.
На рисунке 23 показана точка М.
Тройка чисел 2, 3, 5 — это абсцисса, ордината и аппликата точки М соответственно.
Оглавление.
Глава I. Векторы в пространстве.
1. Понятие вектора в пространстве. Коллинеарные векторы.
2. Длина вектора. Равенство векторов.
3. Сумма векторов. Построение суммы векторов.
4. Разность векторов. Построение разности векторов.
5. Произведение вектора на число. Построение произведения вектора на число.
6. Скалярное произведение векторов. Угол между векторами.
7. Компланарные векторы. Разложение вектора по трём некомпланарным векторам.
Глава II. Координаты точки и координаты вектора в пространстве.
8. Координаты точки. Координаты середины отрезка. Длина отрезка.
9. Координаты вектора. Координаты суммы, разности векторов и произведения вектора на число.
10. Скалярное произведение векторов.
Глава III. Векторно-координатный метод решения задач.
11. Вычисление угла между прямыми.
12. Нормальный вектор плоскости. Вычисление угла между прямой и плоскостью.
13. Вычисление угла между плоскостями.
14. Уравнение плоскости.
15. Построение сечения многогранника плоскостью, заданной уравнением.
Глава IV. Вычисление площадей.
16. Площадь сечения многогранника.
17. Площадь поверхности многогранника.
18. Площадь поверхности призмы.
19. Площадь поверхности пирамиды.
Глава V. Цилиндр. Конус. Шар. Сфера.
20. Цилиндр. Площадь его боковой и полной поверхностей.
21. Конус. Площадь его боковой и полной поверхностей.
22. Шар и сфера.
Глава VI. Объёмы многогранников.
23. Объём параллелепипеда.
24. Объём призмы.
25. Объём пирамиды.
Глава VII. Объёмы тел вращения. Площадь сферы.
26. Объём цилиндра и доли цилиндра.
27. Объём конуса, усечённого конуса и доли конуса.
28. Объём шара и его частей.
29. Площадь сферы и её частей.
Глава VIII. Комбинации многогранников и круглых тел.
30. Комбинации многогранников с цилиндром, конусом и шаром.
31. Комбинации многогранников.
Ответы.
Купить .
Теги: ЕГЭ по геометрии :: геометрия :: Литвиненко :: 11 класс
Смотрите также учебники, книги и учебные материалы:
- ЕГЭ 2021, математика, решение задач, Мирошин В.В., Рязановский А.Р., 2020
- Единый государственный экзамен по МАТЕМАТИКЕ, открытый вариант, 2021
- Решение задач по математике, Для подготовки к ЕГЭ, Якушева Г.М., 2010
- Математика, Новейший справочник школьника, Для подготовки к ЕГЭ, Якушева Г.М., 2009
- ЕГЭ по математике, геометрия, Практическая подготовка, Черняк А.А., Черняк Ж.А., 2015
- Математика, Решение сложных задач Единого государственного экзамена, Колесникова С.И., 2007
- ЕГЭ 2021, математика, тренировочный вариант, профильный уровень
- ЕГЭ 2021, математика, методические материалы, Высоцкий И.Р., Косухин О.Н., Семенов А.В., Трепалин А.С., Черняева М.А.