Задачи по линейной алгебре и геометрии, Гайфуллин А.А., Пенской А.В., Смирнов С.В., 2014

По кнопке выше «Купить бумажную книгу» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «ЛитРес», и потом ее скачать на сайте Литреса.

По кнопке «Найти похожие материалы на других сайтах» можно искать похожие материалы на других сайтах.

On the buttons above you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.

Ссылки на файлы заблокированы по запросу правообладателей.

Links to files are blocked at the request of copyright holders.


Задачи по линейной алгебре и геометрии, Гайфуллин А.А., Пенской А.В., Смирнов С.В., 2014.

   Данное пособие содержит подробные решения типовых задач курса линейной алгебры и геометрии, читаемого на мехмате МГУ им. М. В. Ломоносова.
Для студентов естественнонаучных специальностей, в первую очередь физико-математических.

Задачи по линейной алгебре и геометрии, Гайфуллин А.А., Пенской А.В., Смирнов С.В., 2014


Линейные подпространства.
Задача 10. Является ли линейным подпространством в пространстве Matn (R) матриц порядка n подмножество, образованное следующими элементами:
1) матрицами с нулевой первой строкой;
2) нижнетреугольными матрицами;
3) невырожденными матрицами;
4) трёхдиагональными матрицами;
5) матрицами с нулевым следом.

Решение. 1) Поскольку сумма любых двух матриц с нулевой первой строкой и произведение любой такой матрицы на произвольное число тоже будет иметь такой вид, подмножество всех матриц с нулевой первой строкой замкнуто относительно матричного сложения и относительно умножения на числа, то есть образует линейное подпространство в пространстве Matn(R).
2) Множество всех нижнетреугольных матриц тоже, очевидно, замкнуто относительно операций сложения матриц и умножения матрицы на число и потому тоже является линейным подпространством в Matn(R).
3) Множество всех невырожденных матриц не является линейным подпространством, поскольку, например, не содержит нулевой матрицы.

Оглавление.
Предисловие.
Глава 1. Линейные пространства.
1.1. Определение линейного пространства.
1.2. Линейная зависимость.
1.3. Базис, размерность, координаты.
1.4. Линейные подпространства.
1.5. Сумма и пересечение подпространств.
1.6. Линейные функции и отображения.
1.7. Аффинные пространства.
Глава 2. Линейные операторы.
2.1. Матрица линейного оператора.
2.2. Ядро и образ линейного оператора.
2.3. Собственные значения и собственные векторы.
2.4. Жорданова форма.
2.5. Функции от матриц.
2.6. Инвариантные подпространства.
Глава 3. Билинейные и квадратичные функции.
3.1. Элементарные свойства билинейных и квадратичных функций.
3.2. Приведение квадратичной формы к нормальному виду невырожденными преобразованиями.
3.3. Кососимметрические билинейные и эрмитовы полуторалинейные функции.
Глава 4. Евклидовы и эрмитовы пространства.
4.1. Элементарные свойства скалярного произведения.
4.2. Ортогональные системы векторов.
4.3. Матрица Грама и n-мерный объём.
4.4. Ортогональные проекции, расстояния и углы.
4.5. Геометрия аффинных евклидовых пространств.
4.6. Симплексы.
4.7. Метод наименьших квадратов и интерполяция функций.
Глава 5. Линейные операторы в евклидовых и эрмитовых пространствах.
5.1. Сопряжённые операторы.
5.2. Самосопряжённые операторы.
5.3. Ортогональные и унитарные операторы.
5.4. Кососимметрические операторы.
5.5. Полярное разложение.
Глава 6. Квадратичные формы в евклидовом пространстве.
6.1. Приведение квадратичной формы к каноническому виду ортогональными преобразованиями.
6.2. Приведение пары квадратичных форм к каноническому виду.
Глава 7. Тензоры.
7.1. Основные свойства тензоров.
7.2. Операции над тензорами.
Литература.

Купить .
Дата публикации:






Теги: :: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2024-11-02 17:40:47