Математическая энциклопедия, том 3, Виноградов И.М., 1982

Математическая энциклопедия, Том 3, Виноградов И.М., 1982.

Математическая энциклопедия - справочное издание по всем разделам математики. Основу Энциклопедии составляют обзорные статьи, посвященные важнейшим направлениям математики. Основное требование к статьям такого типа — возможная полнота обзора современного состояния теории при максимальной доступности изложения; эти статьи в целом доступны студентам-математикам старших курсов, аспирантам и специалистам в смежных областях математики, а в определенных случаях — специалистам в других областях знания, применяющим в своей работе .математические методы, инженерам и преподавателям математики. Предусмотрены, далее, средние по размеру статьи по отдельным конкретным проблемам и методам математики; эти статьи предназначены для более узкого круга читателей, поэтому изложение в них может быть менее доступным. Наконец, еще один тип статей — краткие справки-определения. В конце последнего тома Энциклопедии будет помещен предметный указатель, куда войдут не только названия всех статей, но и многие понятия, определения которых будут приводиться внутри статей первых двух типов, равно как и упоминаемые в статьях наиболее важные результаты. Большинство статей Энциклопедии сопровождается списком литературы с порядковыми номерами у каждого названия, что дает возможность цитирования в текстах статей. В конце статей (как правило) указан автор или источник, если статья уже была опубликована ранее (в основном — это статьи Большой Советской Энциклопедии). Имена иностранных (кроме древних) ученых, упоминаемые в статьях, сопровождаются латинским написанием (если нет ссылки на список литературы).

Математическая энциклопедия, Том 3, Виноградов И.М., 1982


КООРДИНАТЫ.
Числа, величины, по к-рым находится (определяется) положение какого-либо элемента (точки) в некоторой совокупности (множестве М), например на плоскости поверхности, в пространстве, на многообразии. В ряде разделов математики и физики К. именуются по-другому, напр. К. элемента (вектора) векторного пространства наз. его компонентами, К. в произведении множеств — проекции на один из его сомножителей, в теории относительности системы К.— это системы отсчета, и т. п. Часто встречается ситуация, когда ввести достаточно разумные и удобные К. глобально на всем множестве невозможно (напр., точкам сферы в отличие от плоскости нельзя взаимно однозначно и непрерывно сопоставить пары чисел), и тогда вводят понятие локальных координат.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Математическая энциклопедия, том 3, Виноградов И.М., 1982 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу



Скачать - djvu - Яндекс.Диск.

Дата публикации:





Теги: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2024-11-02 12:20:13