ЕГЭ 2010, математика, задача c4, Гордин Р.К.

По кнопкам "Купить бумажную книгу" или "Купить электронную книгу" можно купить в официальных магазинах эту книгу, если она имеется в продаже, или похожую книгу. Результаты поиска формируются при помощи поисковых систем Яндекс и Google на основании названия и авторов книги.

Наш сайт не занимается продажей книг, этим занимаются вышеуказанные магазины. Мы лишь даем пользователям возможность найти эту или похожие книги в этих магазинах.

Список книг, которые предлагают магазины, можно увидеть перейдя на одну из страниц покупки, для этого надо нажать на одну из этих кнопок.

ЕГЭ 2010, Математика, Задача C4, Гордин Р.К.

   Пособия по математике серии «ЕГЭ 2010. Математика» ориентированы на подготовку учащихся старшей школы к успешной сдаче Единого государственного экзамена по математике. В данном учебном пособии представлен материал для подготовки к решению задачи С4.
На различных этапах обучения пособие поможет обеспечить уровневый подход к организации повторения, осуществить контроль и самоконтроль знаний по планиметрии.

Пособие предназначено для учащихся старшей школы, учителей математики, родителей.

ЕГЭ 2010, Математика, Задача C4, Гордин Р.К.

Примеры.
В треугольнике ABC медиана AD и биссектриса BE перпендикулярны и пересекаются в точке F. Известно, что площадь треугольника DEF равна 5. Найдите площадь треугольника ABC.

Из точки М, лежащей вне окружности с центром О и радиусом R, проведены касательные МА и MB (А и В — точки касания). Прямые OA и MB пересекаются в точке С. Найдите ОС, если известно, что отрезок ОМ делится окружностью пополам.

Катет прямоугольного треугольника равен 2, а противолежащий ему угол равен 30°. Найдите расстояние между центрами окружностей, вписанных в треугольники, на которые данный треугольник делится медианой, проведённой из вершины прямого угла.

Средняя линия трапеции равна 5, а отрезок, соединяющий середины оснований, равен 3. Углы при большем основании трапеции равны 30° и 60°. Найдите площадь трапеции.
Указание. Если сумма углов при основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен полуразности оснований.

СОДЕРЖАНИЕ
Предисловие 3
Диагностическая работа 5
§ 1. Медиана прямоугольного треугольника.
Решение задачи 1 из диагностической работы 7
Подготовительные задачи 10
Тренировочные задачи 10
§ 2. Удвоение медианы.
Решение задачи 2 из диагностической работы 13
Подготовительные задачи 17
Тренировочные задачи 17

§ 3. Параллелограмм.
Средняя линия треугольника.
Решение задачи 3 из диагностической работы 19
Подготовительные задачи 23
Тренировочные задачи 23
§ 4. Трапеция. Решение задачи 4 из диагностической работы 26
Подготовительные задачи 30
Тренировочные задачи 30

§ 5. Как находить высоты и биссектрисы треугольника?
Решение задачи 5 из диагностической работы 34
Подготовительные задачи 39
Тренировочные задачи 39
§ 6. Отношение отрезков. Решение задачи 6 из диагностической работы 42
Подготовительные задачи 46
Тренировочные задачи 46

§ 7. Отношение площадей.
Решение задачи 7 из диагностической работы 49
Подготовительные задачи 52
Тренировочные задачи 52
§ 8. Касательная к окружности. Решение задачи 8 из диагностической работы 56
Подготовительные задачи 60
Тренировочные задачи 61

§ 9. Касающиеся окружности.
Решение задачи 9 из диагностической работы 63
Подготовительные задачи 67
Тренировочные задачи 68
§ 10. Пересекающиеся окружности. Решение задачи 10 из диагностической работы 73
Подготовительные задачи 76
Тренировочные задачи 76

§ 11. Окружности, связанные с треугольником и четырёхугольником.
Решение задачи 11 из диагностической работы 78
Подготовительные задачи 86
Тренировочные задачи 86
§ 12. Пропорциональные отрезки в окружности. Решение задачи 12 из диагностической работы 90
Подготовительные задачи 93
Тренировочные задачи 93

§ 13. Углы, связанные с окружностью.
Метод вспомогательной окружности. Решение задачи 13 из диагностической работы 97
Подготовительные задачи 103
Тренировочные задачи 104
§ 14. Вспомогательные подобные треугольники. Решение задачи 14 из диагностической работы 108
Подготовительные задачи 111
Тренировочные задачи 111

§ 15. Некоторые свойства высот и точки их пересечения.
Решение задачи 15 из диагностической работы 115
Подготовительные задачи 122
Тренировочные задачи 122
Диагностическая работа 1 125
Диагностическая работа 2 126
Диагностическая работа 3 127
Диагностическая работа 4 128
Диагностическая работа 5 129
Диагностическая работа 6 130
Приложение. Список полезных фактов 131
Литература 137
Ответы 138
Тренировочные задачи 138.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу ЕГЭ 2010, математика, задача c4, Гордин Р.К. - fileskachat.com, быстрое и бесплатное скачивание.

Скачать djvu
Ниже можно купить эту книгу, если она есть в продаже, и похожие книги по лучшей цене со скидкой с доставкой по всей России.Купить книги



Скачать книгу ЕГЭ 2010, Математика, Задача C4, Гордин Р.К. - djvu - depositfiles.

Скачать книгу ЕГЭ 2010, Математика, Задача C4, Гордин Р.К. - djvu - Яндекс.Диск.
Дата публикации:





Теги: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 


Не нашёл? Найди:





2025-04-27 13:27:20