Геометрические методы в теории обыкновенных дифференциальных уравнений, Арнольд В.И., 1999.
В книге изложен ряд основных идей и методов, применяемых для исследования обыкновенных дифференциальных уравнений. Элементарные методы интегрирования рассматриваются с точки зрения общематематических понятий (разрешение особенностей, группы Ли симметрии, диаграммы Ньютона и т.д.). Теория уравнений с частными производными первого порядка изложена на основе геометрии контактной структуры.
В книгу включены классические и современные результаты теории динамических систем: структурная устойчивость, У-системы, аналитические методы локальной теории в окрестности особой точки или периодического решения (нормальные формы Пуанкаре), теория бифуркации фазовых портретов при изменении параметров (мягкое и жесткое возбуждение автоколебаний при потере устойчивости), удвоение периода Фейгенбаума, теорема Дюлака и др. Книга рассчитана на широкий круг математиков и физиков - от студентов до преподавателей и научных работников.
Содержание.
ГЛАВА 1. Специальные уравнения
§ 1. Дифференциальные уравнения, инвариантные относительно групп симметрии
§ 2. Разрешение особенностей дифференциальных уравнений
§ 3. Уравнения, не разрешенные относительно производных
§ 4. Нормальная форма уравнения, не разрешенного относительно производной, в окрестности регулярной особой точки
§ 5. Стационарное уравнение Шредингера
§ 6. Геометрия дифференциального уравнения второго порядка и геометрия пары полей направлений в трехмерном пространстве
ГЛАВА 2. Уравнения с частными производными первого порядка
§ 7. Линейные и квазилинейные уравнения с частными производными первого порядка
§ 8. Нелинейное уравнение с частными производными первого порядка
§ 9. Теорема Фробениуса
ГЛАВА 3. Структурная устойчивость
§ 10. Понятие структурной устойчивости
§ 11. Дифференциальные уравнения на торе
§ 12. Аналитическое приведение к повороту аналитических диффеоморфизмов окружности
§ 13. Введение в гиперболическую теорию
§ 14. У-системы
§ 15. Структурно устойчивые системы не всюду плотны
ГЛАВА 4. Теория возмущений
§ 16. Метод усреднения
§ 17. Усреднение в одночастотных системах
§ 18. Усреднение в многочастотных системах
§ 19. Усреднение в гамильтоновых системах
§ 20. Адиабатические инвариант
§ 21. Усреднение в слоении Зейферта
ГЛАВА 5. Нормальные формы
§ 22. Формальное приведение к линейной нормальной форме
§ 23. Резонансный случай
§ 24. Области Пуанкаре и Зигеля
§ 25. Нормальная форма отображения в окрестности неподвижной точки
§ 26. Нормальная форма уравнения с периодическими коэффициентами
§ 27. Нормальная форма окрестности эллиптической кривой
§ 28. Доказательство теоремы Зигеля
ГЛАВА 6. Локальная теория бифуркаций
§ 29. Семейства и деформации
§ 30. Матрицы, зависящие от параметров, и особенности декремент-диаграмм
§ 31. Бифуркации особых точек векторного поля
§ 32. Версальные деформации фазовых портретов
§ 33. Потеря устойчивости положения равновесия
§ 34. Потеря устойчивости автоколебаний
§ 35. Версальные деформации эквивариантных векторных полей на плоскости
§ 36. Перестройки топологии при резонансах
§ 37. Классификация особых точек
Предисловие.
Основное открытие Ньютона, то, которое он счел нужным засекретить и опубликовал лишь в виде анаграммы, состоит в следующем: «Data aequatione quotcunque fluentes quantitae involvente fluxiones invenire et vice versa». В переводе на современный математический язык это означает: «Полезно решать дифференциальные уравнения».
В настоящее время теория дифференциальных уравнений представляет собой трудно обозримый конгломерат большого количества разнообразных идей и методов, в высшей степени полезный для всевозможных приложений и постоянно стимулирующий теоретические исследования во всех отделах математики. Большая часть путей, связывающих абстрактные математические теории с естественнонаучными приложениями, проходит через дифференциальные уравнения. Многие разделы теории дифференциальных уравнений настолько разрослись, что стали самостоятельными науками; проблемы теории дифференциальных уравнений имели большое значение для возникновения таких наук, как линейная алгебра, теория групп Ли, функциональный анализ, квантовая механика и т. д. Таким образом, дифференциальные уравнения лежат в основе естественнонаучного математического мировоззрения.
При отборе материала для настоящей книги автор старался изложить основные идеи и методы, применяемые для изучения дифференциальных уравнений. Особые усилия были приложены к тому, чтобы основные идеи, как правило простые и наглядные, не загромождались техническими деталями. С наибольшей подробностью рассматриваются наиболее фундаментальные и простые вопросы, в то время как изложение более специальных и трудных частей теории носит характер обзора. Книга начинается с исследования некоторых специальных дифференциальных уравнений, интегрируемых в квадратурах. При этом основное внимание уделяется не формально-рецептурной стороне элементарной теории интегрирования, а ее связям с общематематическими идеями, методами и понятиями (разрешение особенностей, группы Ли, диаграммы Ньютона), с одной стороны, и естественнонаучным приложениям - с другой.
Купить книгу - Геометрические методы в теории обыкновенных дифференциальных уравнений, Арнольд В.И. .
Купить книгу - Геометрические методы в теории обыкновенных дифференциальных уравнений, Арнольд В.И. .
Теги: книга по физике :: дифференциальное уравнение :: теория :: Арнольд
Смотрите также учебники, книги и учебные материалы:
- Краткий курс аналитической геометрии, Ефимов Н.В., 2005
- Таблицы интегралов и другие математические формулы, Двaйт Г.Б., 1973
- Сборник математических формул, Цикунов А.Е., 2002
- Циклоида, Берман Г.Н., 1980
- Малыши и математика, Домашний кружок для дошкольников, Звонкин А.К., 2006
- Calculus. A Complete Course, Adams R.A., Essex C., 2009
- Начертательная геометрия, конспект лекций, Козлова И.С., Щербакова Ю.В.
- Геометрія, 10 клас, академічний і профільний рівні, Нелін Є.П., 2010