Элементы теории вероятностей в примерах и задачах - Козлов М.В.

Название: Элементы теории вероятностей в примерах и задачах. 1990.

Автор: Козлов М.В.

    Основы теории вероятностей излагаются в форме примеров и задач, к которым в тексте приведены подробные решения. Уровень сложности колеблется в широком диапазоне: от тренировочных задач до маленьких исследований, могущих служить началом курсовой работы. Всего примеров и задач около 450. Принцип изложения — от частных моделей к общим понятиям — направлен на развитие у читателя вкуса и навыков к самостоятельному научному творчеству. Для освоения материала достаточно владения началами математического анализа.

Элементы теории вероятностей в примерах и задачах - Козлов М.В.

    Начинающие изучать теорию вероятностей стоят перед двумя проблемами. Во-первых, в понимании предмета исключительно велика роль интуитивной базы. Теорию вероятностей можно сравнить в этом отношении с теоретической механикой. Однако, если знакомство с элементами механики начинается со школьной скамьи и подкрепляется собственным практическим опытом, то, к сожалению, понятие вероятности, которое с успехом могло бы быть усвоено в средней школе, появляется лишь в ВУЗовских курсах. В результате слушатели вынуждены следовать за формально-математическими построениями теории с еще не сложившимся интуитивным базисом. Неудивительно, что общий уровень вероятностно-статистической культуры остается фантастически низким. Процесс «дозревания» даже для хороших студентов затягивается в сравнении с другими математическими дисциплинами. По-видимому, настала пора обеспечить пакетами программ курсы теории вероятностей, чтобы можно было на собственном опыте работы с моделированными данными получить представление о характере проявления вероятностных закономерностей. Пока приходится опираться на традиционный подход, связанный с обращением к азартным играм, урцовым схемам и т. п.

ОГЛАВЛЕНИЕ
Предисловие
Глава I.
НАЧАЛЬНЫЕ ПОНЯТИЯ 9

§ 1. Вероятность в классической схеме
Классическая вероятность и элементы комбинаторики (1.1—1.10). Симметричное случайное блуждание (1.11—1.19). Урновая модель (1.20—1.30).
§ 2. Вероятностное пространство, случайные величины, распределение вероятностей 25
События и вероятностная мера (2.1—2.4). Испытания Бернулли (2.5, 2.6). Разбиения, случайные величины в схеме Бернулли (2.7— 2.14). Случайные величины в схеме бесконечной последовательности испытаний Бернулли (2.15—2.18). Задача о разорении игрока (2.19, 2.20).
§ 3. Непрерывные вероятностные модели 42
Случайные величины в схеме случайного выбора точек из отрезка, функции распределений, плотности (3.1—3.10). Пуассоновский процесс и предельная схема Пуассона (3.11—3.15). Распределение арксинуса в симметричном блуждании (3.16). Формула Стирлинга и нормальное распределение в схеме симметричного блуждания (3.17—3.21). Многомерные распределения (3.22—3.27).
§ 4. Независимость 66
Независимые дискретные случайные величины, распределение суммы, производящие функции (4.1—4.11). Независимые события (4.12— 4.14). Независимые непрерывные случайные величины (4.15—4.22). Пуассоновский процесс и экспоненциальное распределение (4.23— 4.^6). Броуновское движение (4.27).
§ 5. Условная вероятность 86
Условные распределения дискретных случайных величин (5.1—5.10). .Марковские цепи (5.1 i —5.16). Условные плотности (5.17, 5.18). Марковские цепи с непрерывным множеством состояний (5.19, 5.20).
§ 6. Пространство и мера 101
Алгебра множеств, мера и ее свойства (G.1—6.7). Расширение алгебры множеств, внешняя мера, измеримые множества, теорема о существовании и единственности продолжении меры (6.8—6.18). .Мера Лебега (6.19). Меры на прямой и функции распределения (6.20—6.23). Мера на плоскости (6.24, 6.25). Последовательности испытаний (G.26—6.2S). Монотонные классы (6.30- 6.37).
Глава II.
ХАРАКТЕРИСТИКИ ВЕРОЯТНОСТНЫХ РАСПРЕДЕЛЕНИЙ 128

§ 7. Математическое ожидание 128
Математическое ожидание дискретных случайных величин (7.1— 7.16). Математическое ожидание в общем случае: определение, свойства, вычисление (7.17—7.34).
§ 8. Дисперсия, ковариация, среднеквадратическое расстояние 143-
Неравенство Чебышева, дисперсия, закон больших чисел в схеме Бернулли (8.1—8.10). Приближение непрерывных функций (8.11, 8.12). Вычисление н свойства дисперсии (8.13—8.16). Ковариация (8.17—8.21). Среднеквадратическое расстояние (8.22). Дисперсия суммы (8.23, 8.24). Закон больших чисел в форме Чебышева (8.25). Дисперсия как мера качества статистической оценки (8.26, 8.27). Матрица ковариаций (8.28—8.35). Линейные оценки с минимальной дисперсией (8.36).
§ 9. Условное математическое ожидание 158
Определение (9.1—9.3). Оптимальная нелинейная оценка (9.4). Вычисление и свойства условного ожидания в дискретном случае (9.5— 9.12). Свойства в непрерывном случае (9.13—9.17). Многомерное нормальное распределение (9.18). Несмещенное оценивание и достаточные статистики (9.19—9.22). Мартингалы (9.23). Ветвящийся процесс (9.24).
§ 10. Измеримые функции и интеграл 174
Интеграл Лебега от простых функций (10.1—10.12). Интеграл Лебега и его свойства (10.13—10.28). Интегралы Римана, Лебега, Ри-маиа—Стильтьеса, Лебега—Стильтьеса (10.29, 10.30). Интеграл на произведении пространств (10.31—10.35). Меры и плотности (10.36— 10.40). Марковские процессы (10.41).
Глава III.
НЕКОТОРЫЕ МОДЕЛИ И МЕТОДЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ 199

§ 11. Простое симметричное блуждание 199
Времена достижения и возвращения (11.1—11.6). Предельные теоремы для времен достижения и возвращения (11.7, 11.8). Ветвящийся процесс (11.9). Условное блуждание и броуновский мост, предельные теоремы (11.10—11.18, 11.21). Гауссовские процессы (11.19, 11.20). Броуновская экскурсия (11.22).
§ 12. Схема Бернулли и простое блуждание 223
Нормальное приближение и большие уклонения для биномиального распределения (12.1—12.4). Нормальное приближение для пуассоновского, отрицательного биномиального и гамма распределений (12.5—12.7). Эмпирическая функция распределения, статистики Колмогорова—Смирнова (12.8—12.10). Сходимость с вероятностью 1, усиленный закон больших чисел, леммы Бореля—Кантелли (12.11— 12.14). Времена достижения (12.15). Предельные теоремы для простого блуждания (12.16—12.20). Среднее и дисперсия времени достижения (12.21). Условная предельная теорема (12.22).
§ 13. Сходимость распределений, преобразование Лапласа и характеристические функции 247
Сходимость случайных величин и распределений (13.1—13.10). Асимптотическая нормальность выборочных квантилей (13.11). Сходимость производящих функций (13.12—13.14). Интеграл Римана—Стильтьеса, преобразование Лапласа, формула обращения, теорема непрерывности, моменты (13.15—13.30, 13.33). Применение преобразования Лапласа (13.31, 13.32, 13.34, 13.35). Характеристические функции
(13.36—13.42). Закон больших чисел в форме Хинчина (13.43). Центральная предельная теорема (13.44—13.53). Приближение непрерывной функции тригонометрическими полиномами (13.54). Формула обращения для целочисленных величин (13.55).
§ 14. Марковские модели 277
Неоднородное простое блуждание (14.1—14.9). Процесс Гальтона— Ватсона (14.10—14.24). Условный ветвящийся процесс (14.25—14.29). Ветвящийся процесс с параметром ц>1 (14.30—14.34). Процессы с иммиграцией (14.35—14.37). Ветвящийся процесс в случайной среде (14.38). Дискретные процессы восстановления и марковские цепи (14.39—14.48).
Литература 342
Список обозначений и сокращений 343



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Элементы теории вероятностей в примерах и задачах - Козлов М.В. - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу



Скачать книгу Элементы теории вероятностей в примерах и задачах - Козлов М.В. - depositfiles

Скачать книгу Элементы теории вероятностей в примерах и задачах - Козлов М.В. - letitbit
Дата публикации:





Теги: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2024-10-31 04:32:57