Руководство к решению задач по высшей математике, Теории вероятностей и математической статистике, Лихолетов И.И., Мацкевич И.П., 1969.
Данная книга предназначена для студентов экономических ВУЗов. В данное пособие входят следующие разделы: элементы аналитической геометрии и векторной алгебры, введение в анализ, дифференциальное и интегральное исчисление, теория рядов, математическая статистика и теория вероятностей.
В начале каждой главы даны краткая теоретическая информация и примерные решения задач, с тем чтобы последующие задачи студенты могли решить самостоятельно. На вычислительные задачи даны ответы.
При подготовке пособия работа между авторами была распределена следующим образом: И. И. Лихолетов написал первую и вторую части, И. П. Мацкевич написал третью часть и подобрал задачи к главам IV—VII, снабдив их ответами.
уравнение
Руководство к решению задач по высшей математике, Теории вероятностей и математической статистике, Лихолетов И.И., Мацкевич И.П., 1969
Скачать и читать Руководство к решению задач по высшей математике, Теории вероятностей и математической статистике, Лихолетов И.И., Мацкевич И.П., 1969Дифференциальные и интегральные уравнения, вариационное исчисление в примерах и задачах, Васильева А.Б., Медведев Г.Н., 2003
Дифференциальные и интегральные уравнения, вариационное исчисление в примерах и задачах, Васильева А.Б., Медведев Г.Н., 2003.
Пособие охватывает все разделы курсов "Дифференциальные и интегральные уравнения. Вариационное исчисление". По каждой теме кратко излагаются основные теоретические сведения; приводятся решения стандартных и нестандартных задач; даются задачи с ответами для самостоятельной работы.
Для студентов ВУЗов, обучающихся по специальностям "Физика" и "Прикладная математика".
Скачать и читать Дифференциальные и интегральные уравнения, вариационное исчисление в примерах и задачах, Васильева А.Б., Медведев Г.Н., 2003Пособие охватывает все разделы курсов "Дифференциальные и интегральные уравнения. Вариационное исчисление". По каждой теме кратко излагаются основные теоретические сведения; приводятся решения стандартных и нестандартных задач; даются задачи с ответами для самостоятельной работы.
Для студентов ВУЗов, обучающихся по специальностям "Физика" и "Прикладная математика".
Справочник по дифференциальным уравнениям в частных производных первого порядка, Камке Э., 1966
Справочник по дифференциальным уравнениям в частных производных первого порядка, Камке Э., 1966.
Книга Э. Камке является единственным в мировой литературе справочником по дифференциальным уравнениям в частных производных первого порядка для одной неизвестной функции. В ней дается конспективное изложение важнейших разделов теории и собрано около 500 уравнений с решениями.
Книга предназначена для широкого круга научных работников и инженеров, сталкивающихся в своей практической деятельности с дифференциальными уравнениями. Значение этого справочника особенно велико в связи с тем, что в настоящее время на русском языке нет книги, в которой бы всесторонне и полно освещалась теория вопроса.
Скачать и читать Справочник по дифференциальным уравнениям в частных производных первого порядка, Камке Э., 1966Книга Э. Камке является единственным в мировой литературе справочником по дифференциальным уравнениям в частных производных первого порядка для одной неизвестной функции. В ней дается конспективное изложение важнейших разделов теории и собрано около 500 уравнений с решениями.
Книга предназначена для широкого круга научных работников и инженеров, сталкивающихся в своей практической деятельности с дифференциальными уравнениями. Значение этого справочника особенно велико в связи с тем, что в настоящее время на русском языке нет книги, в которой бы всесторонне и полно освещалась теория вопроса.
Математика, Методы решений
Название: Математика. Методы решений.
В этой брошюре даются методы решения неравенств и уравнений.
Скачать и читать Математика, Методы решенийВ этой брошюре даются методы решения неравенств и уравнений.
Неравенства и уравнения, Талочкин П.Б., 1970
Название: Неравенства и уравнения.
Автор: Талочкин П.Б.
1970
В книге дается материал для упражнений при совместном изучении уравнений и неравенств по всем классам средней школы. Назначение пособия — помочь начинающему учителю в подборе материала на уравнения и неравенства.
Купить бумажную или электронную книгу и скачать и читать Неравенства и уравнения, Талочкин П.Б., 1970Автор: Талочкин П.Б.
1970
В книге дается материал для упражнений при совместном изучении уравнений и неравенств по всем классам средней школы. Назначение пособия — помочь начинающему учителю в подборе материала на уравнения и неравенства.
Методы решения уравнений высших степеней
Название: Методы решения уравнений высших степеней.
Возвратные уравнения нечетной степени.
Любое возвратное уравнение нечетной степени сводится к квадратному уравнению четной
степени, т.к у любого возвратного уравнения нечетной степени один из корней всегда равен -1.
Скачать и читать Методы решения уравнений высших степенейВозвратные уравнения нечетной степени.
Любое возвратное уравнение нечетной степени сводится к квадратному уравнению четной
степени, т.к у любого возвратного уравнения нечетной степени один из корней всегда равен -1.
Задачи по математике, уравнения и неравенства - Вавилов В.В., Мельников И.И., Олехник С.Н.
Название: Задачи по математике - Уравнения и неравенства.
Автор: Вавилов В.В. Мельников И.И. Олехник С.Н.
1987.
Настоящая книга представляет собой справочное пособие, содержащее систематическое изложение методов решения уравнений и неравенств с одним неизвестным: иррациональных, логарифмических и показательных уравнений и неравенств, а также уравнений и неравенств, содержащих знак абсолютной величины.
Теоретическую основу составляют понятия равносильного перехода и эквивалентности двух уравнений или неравенств.
Скачать и читать Задачи по математике, уравнения и неравенства - Вавилов В.В., Мельников И.И., Олехник С.Н.Автор: Вавилов В.В. Мельников И.И. Олехник С.Н.
1987.
Настоящая книга представляет собой справочное пособие, содержащее систематическое изложение методов решения уравнений и неравенств с одним неизвестным: иррациональных, логарифмических и показательных уравнений и неравенств, а также уравнений и неравенств, содержащих знак абсолютной величины.
Теоретическую основу составляют понятия равносильного перехода и эквивалентности двух уравнений или неравенств.
Уравнения и неравенства - Нестандартные методы решения, справочник, Олехник С.Н., Потапов М.К., Пасиченко П.И.
Название: Уравнения и неравенства - Нестандартные методы решения - Справочник
Автор: Олехник С.Н., Потапов М.К., Пасиченко П.И.
Справочник посвящен задачам, которые для школьников считаются задачами повышенной трудности, требующим нестандартных методов решений. Приводятся методы решений уравнений и неравенств, основанные на геометрических соображениях, свойствах функций (монотонности, ограниченности, четности), применении производной. Книга ставит своей целью познакомить школьников с различными, основанными на материале программы общеобразовательной средней школы, методами решения, казалось бы трудных задач, проиллюстрировать широкие возможности использования хорошо усвоенных школьных знаний и привить читателю навыки употреблять нестандартные методы рассуждений при решении задач. Для школьников, абитуриентов, руководителей математических кружков, учителей и всех любителей решать задачи.
Скачать и читать Уравнения и неравенства - Нестандартные методы решения, справочник, Олехник С.Н., Потапов М.К., Пасиченко П.И.Автор: Олехник С.Н., Потапов М.К., Пасиченко П.И.
Справочник посвящен задачам, которые для школьников считаются задачами повышенной трудности, требующим нестандартных методов решений. Приводятся методы решений уравнений и неравенств, основанные на геометрических соображениях, свойствах функций (монотонности, ограниченности, четности), применении производной. Книга ставит своей целью познакомить школьников с различными, основанными на материале программы общеобразовательной средней школы, методами решения, казалось бы трудных задач, проиллюстрировать широкие возможности использования хорошо усвоенных школьных знаний и привить читателю навыки употреблять нестандартные методы рассуждений при решении задач. Для школьников, абитуриентов, руководителей математических кружков, учителей и всех любителей решать задачи.
Другие статьи...
- Уравнения в школьном курсе математики - Бекаревич А.Н.
- Задачи по алгебре, арифметике и анализу, Прасолов В.В.
- Иррациональные уравнения, Варшавский И.К.
- Обобшающий урок по геометрии - Метод координат - 9 класс
- Презентация по математике - Эконометрика - Уравнение множественной регрессии - Теорема Гаусса-Маркова
- Презентация по математике - Алгебраические уравнения произвольных степеней
- Элементарная математика, Кеда О.А.
- Математика, Сборник тестов ЕГЭ 2009, Клово А.Г., Мальцев Д.А.
Показана страница 4 из 6