топология

Элементы комбинаторной и дифференциальной топологии, Прасолов В.В., 2004

Элементы комбинаторной и дифференциальной топологии, Прасолов В.В., 2004.

   Методы, используемые современной топологией, весьма разнообразны. В этой книге подробно рассматриваются методы комбинаторной топологии, которые заключаются в исследовании топологических пространств посредством их разбиений на какие-то элементарные множества, и методы дифференциальной топологии, которые заключаются в рассмотрении гладких многообразий и гладких отображений. Нередко одну и ту же топологическую задачу можно решить как комбинаторными методами, так и дифференциальными. В таких случаях обсуждаются оба подхода.
Одна из главных целей книги состоит в том, чтобы продвинуться в изучении свойств топологических пространств (и особенно многообразий) столь далеко, сколь это возможно без привлечения сложной техники. Этим она отличается от большинства книг по топологии.
Книга содержит много задач и упражнений. Почти все задачи снабжены подробными решениями.

Элементы комбинаторной и дифференциальной топологии, Прасолов В.В., 2004
Скачать и читать Элементы комбинаторной и дифференциальной топологии, Прасолов В.В., 2004
 

Курс геометрии, элементы топологии, дифференциальная геометрия, основания геометрии, Кузовлев В.П., Подаева Н.Г.,2012

Курс геометрии, элементы топологии, дифференциальная геометрия, основания геометрии, Кузовлев В. П., Подаева Н.Г., 2012.

Предлагаемое пособие примыкает по тематике к ряду известных учебников и рассчитано на российскую систему профессионального образования, на студентов математических специальностей педагогических вузов и университетов не ранее чем с третьего семестра обучения. Оно также может быть полезно аспирантам и преподавателям математики в средней школе и университете. При подготовке пособия основной целью было предложить изучающим геометрию студентам, аспирантам, преподавателям книгу, доступную для чтения, в которой они могли бы найти содержательные сведения об основных математических структурах, раскрывающие наиболее значимые аспекты последних с исторической точки зрения.

Курс геометрии, элементы топологии, дифференциальная геометрия, основания геометрии, Кузовлев В. П., Подаева Н.Г.,2012

Скачать и читать Курс геометрии, элементы топологии, дифференциальная геометрия, основания геометрии, Кузовлев В.П., Подаева Н.Г.,2012
 

Наглядная топология, Болтянский В.Г., Ефремович В.А., 1982

Наглядная топология, Болтянский В.Г., Ефремович В.А., 1982.

    Топология - сравнительно молодая математическая наука . Примерно за сто лет ее существования в ней достигнуты результаты, важные для многих разделов математики. Поэтому проникновение в "мир топологии " для начинающего несколько затруднительно, так как требует знания многих фактов геометрии, алгебры, анализа и других разделов математики, а также умения рассуждать.

    Книга написана просто и наглядно . В форме, доступной для понимания школьников, она знакомит читателя с идеями топологии , ее основными понятиями и фактами. Большое количество рисунков облегчает усвоение материала. Этому же способствуют свыше двухсот задач. Для школьников, преподавателей, студентов.

Наглядная топология, Болтянский В.Г., Ефремович В.А., 1982.


Скачать и читать Наглядная топология, Болтянский В.Г., Ефремович В.А., 1982
 

Что такое математика? - Курант Р., Роббинс Г.

Что такое математика? - Р. Курант, Г. Роббинс - 2000.

Что такое математика? - Р. Курант, Г. Роббинс

Книга призвана сократить разрыв между математикой, которая преподается в школе, и наиболее живыми и важными для естествознания и техники разделами современной математической науки. Начиная с элементарных понятий, читатель движется к важным областям современной науки. Книга написана доступным языком и является классикой популярного жанра в математике.

Книга предназначена для школьников, студентов, преподавателей, а также для всех интересующихся развитием математики и ее структурой.
Скачать и читать Что такое математика? - Курант Р., Роббинс Г.
 

Презентация - Теория систем и системное мышление

Презентация - Теория систем и системное мышление

TeorSistem

Теория систем – это лекарство, которое превратилось в болезнь.
                                                                                         Кен Уилбер
Скачать и читать Презентация - Теория систем и системное мышление
 

Лекции по топологии для физиков, Шапиро И.С., Ольшанецкий М.А.

Лекции по топологии для физиков - Шапиро И.С., Ольшанецкий М.А.

   Предлагаемый текст представляет собой обработанный курс лекций, прочитанных И. С. Шапиро группе физиков ИТЭФ в 1977-78 гг. Публикуемая часть курса является введением в теорию гомологии.
   Лекции рассчитаны на физиков-теоретиков, аспирантов и студентов физико-математических специальностей.

lekcii_po_topologii_dlya_fizikov

Скачать и читать Лекции по топологии для физиков, Шапиро И.С., Ольшанецкий М.А.
 

Функции комплексного переменного: теория и практика, справочное пособие по высшей математике, том 4, Боярчук А.К., 2001

Функции комплексного переменного: теория и практика - Справочное пособие по высшей математике. Том 4 - Боярчук А.К. - 2001

Том 4 является логическим продолжением трех предыдущих ориентированных на практику томов и содержит более четырехсот подробно решенных задач, но при этом отличается более детальным изложением теоретических вопросов и может служить самостоятельным замкнутым курсом теории функций комплексного переменного. Помимо вопросов, обычно включаемых в курсы такого рода, в книге излагается ряд нестандартных - таких, как интеграл Ньютона-Лейбница и производная Ферма-Лагранжа.
Пособие предназначено для студентов, преподавателей и работников физико-математических, экономических и инженерно-технических специальностей, специалистов по прикладной математике, а также лиц, самостоятельно изучающих высшую математику.
Скачать и читать Функции комплексного переменного: теория и практика, справочное пособие по высшей математике, том 4, Боярчук А.К., 2001
 
Показана страница 3 из 3