61 Московская математическая олимпиада, Анисов С.С., Ковальджи А.К., Спивак А.С., 1998.
Фрагмент из книги.
На глобусе проведены 17 параллелей и 24 меридиана. На сколько частей разделена поверхность глобуса? Меридиан — это дуга, соединяющая Северный полюс с Южным. Параллель — это окружность, параллельная экватору (экватор тоже является параллелью).
олимпиада по математике
61 Московская математическая олимпиада, Анисов С.С., Ковальджи А.К., Спивак А.С., 1998
Скачать и читать 61 Московская математическая олимпиада, Анисов С.С., Ковальджи А.К., Спивак А.С., 1998Олимпиада Ломоносов по математике, Сергеев И.Н., 2008
Олимпиада Ломоносов по математике, Сергеев И.Н., 2008.
В книге приведены варианты олимпиады «Ломоносов» по математике 2005—2008 гг., а также задания олимпиады механико-математического факультета МГУ для 8—10-классников.
Для учащихся старших классов, учителей математики, абитуриентов.
Скачать и читать Олимпиада Ломоносов по математике, Сергеев И.Н., 2008В книге приведены варианты олимпиады «Ломоносов» по математике 2005—2008 гг., а также задания олимпиады механико-математического факультета МГУ для 8—10-классников.
Для учащихся старших классов, учителей математики, абитуриентов.
Заочные математические олимпиады, Васильев Н.Б., Гутенмахер В.Л., Раббот Ж.М., Тоом А.Л., 2012
Заочные математические олимпиады, Васильев Н.Б., Гутенмахер В.Л., Раббот Ж.М., Тоом А.Л., 2012.
Основу книги составляют задачи, предлагавшиеся на Всесоюзных заочных математических олимпиадах и конкурсах Всесоюзной заочной математической школы для учащихся старших классов (ныне ВЗМШ). Задачи разбиты на тематические циклы, за которыми следуют их решения, обсуждения и дополнительные вопросы для самостоятельного обдумывания.
Цель книги - научить читателя творчески относиться к решению каждой интересной задачи, показать ему, с какими другими математическими вопросами связана эта задача и какие общие закономерности лежат в основе ее решения.
Книга предназначена для школьников старших классов, учителей математики и руководителей математических кружков, а также для всех любителей математических задач.
Скачать и читать Заочные математические олимпиады, Васильев Н.Б., Гутенмахер В.Л., Раббот Ж.М., Тоом А.Л., 2012Основу книги составляют задачи, предлагавшиеся на Всесоюзных заочных математических олимпиадах и конкурсах Всесоюзной заочной математической школы для учащихся старших классов (ныне ВЗМШ). Задачи разбиты на тематические циклы, за которыми следуют их решения, обсуждения и дополнительные вопросы для самостоятельного обдумывания.
Цель книги - научить читателя творчески относиться к решению каждой интересной задачи, показать ему, с какими другими математическими вопросами связана эта задача и какие общие закономерности лежат в основе ее решения.
Книга предназначена для школьников старших классов, учителей математики и руководителей математических кружков, а также для всех любителей математических задач.
LXXI Московская математическая олимпиада, Математический праздник, Арнольд В.Д., 2008
LXXI Московская математическая олимпиада, Математический праздник, Арнольд В.Д., 2008.
Фрагмент из книги.
Зайчиха купила для своих семерых зайчат семь барабанов разных размеров и семь пар палочек разной длины. Если зайчонок видит, что у него и барабан больше, и палочки длиннее, чем у кого-то из братьев, он начинает громко барабанить. Какое наибольшее число зайчат сможет начать барабанить?
Скачать и читать LXXI Московская математическая олимпиада, Математический праздник, Арнольд В.Д., 2008Фрагмент из книги.
Зайчиха купила для своих семерых зайчат семь барабанов разных размеров и семь пар палочек разной длины. Если зайчонок видит, что у него и барабан больше, и палочки длиннее, чем у кого-то из братьев, он начинает громко барабанить. Какое наибольшее число зайчат сможет начать барабанить?
LXX Московская математическая олимпиада, Задачи и решения, Арнольд В.Д., 2007
LXX Московская математическая олимпиада, Задачи и решения, Арнольд В.Д., 2007.
Фрагмент из книги.
По двум телевизионным каналам одновременно начали показывать один и тот же фильм. На первом канале фильм разбили на части по 20 минут каждая и вставили между ними двухминутные рекламные паузы. А на втором канале фильм разбили на части по 10 минут каждая и вставили между ними минутные рекламные паузы. На каком канале фильм закончится раньше?
Скачать и читать LXX Московская математическая олимпиада, Задачи и решения, Арнольд В.Д., 2007Фрагмент из книги.
По двум телевизионным каналам одновременно начали показывать один и тот же фильм. На первом канале фильм разбили на части по 20 минут каждая и вставили между ними двухминутные рекламные паузы. А на втором канале фильм разбили на части по 10 минут каждая и вставили между ними минутные рекламные паузы. На каком канале фильм закончится раньше?
LXVIII Московская математическая олимпиада, Математический праздник, Арнольд В.Д., 2005
LXVIII Московская математическая олимпиада, Математический праздник, Арнольд В.Д., 2005.
Фрагмент из книги.
Таракан Валентин объявил, что умеет бегать со скоростью 50 м/мин. Ему не поверили, и правильно: на самом деле Валентин всё перепутал и думал, что в метре 60 сантиметров, а в минуте 100 секунд. С какой скоростью (в «нормальных» м/мин) бегает таракан Валентин?
Скачать и читать LXVIII Московская математическая олимпиада, Математический праздник, Арнольд В.Д., 2005Фрагмент из книги.
Таракан Валентин объявил, что умеет бегать со скоростью 50 м/мин. Ему не поверили, и правильно: на самом деле Валентин всё перепутал и думал, что в метре 60 сантиметров, а в минуте 100 секунд. С какой скоростью (в «нормальных» м/мин) бегает таракан Валентин?
LXVII Московская математическая олимпиада, Задачи и решения, Арнольд В.Д., 2004
LXVII Московская математическая олимпиада, Задачи и решения, Арнольд В.Д., 2004.
Фрагмент из книги.
Кролик, готовясь к приходу гостей, повесил в трёх углах своей многоугольной норы по лампочке. Пришедшие к нему Винни-Пух и Пятачок увидели, что не все горшочки с мёдом освещены. Когда они полезли за мёдом, две лампочки разбились. Кролик перевесил оставшуюся лампочку в некоторый угол так, что вся нора оказалась освещена. Могло ли такое быть? (Если да, нарисуйте пример, если нет, обоснуйте ответ.).
Скачать и читать LXVII Московская математическая олимпиада, Задачи и решения, Арнольд В.Д., 2004Фрагмент из книги.
Кролик, готовясь к приходу гостей, повесил в трёх углах своей многоугольной норы по лампочке. Пришедшие к нему Винни-Пух и Пятачок увидели, что не все горшочки с мёдом освещены. Когда они полезли за мёдом, две лампочки разбились. Кролик перевесил оставшуюся лампочку в некоторый угол так, что вся нора оказалась освещена. Могло ли такое быть? (Если да, нарисуйте пример, если нет, обоснуйте ответ.).
LXVI Московская математическая олимпиада, Арнольд В.Д., 2003
LXVI Московская математическая олимпиада, Арнольд В.Д., 2003.
Фрагмент из книги.
В стране 15 городов, некоторые из них соединены авиалиниями, принадлежащими трём авиакомпаниям. Известно, что даже если любая из авиакомпаний прекратит полёты, можно будет добраться из любого города в любой другой (возможно, с пересадками), пользуясь рейсами оставшихся двух компаний. Какое наименьшее количество авиалиний может быть в стране?
Скачать и читать LXVI Московская математическая олимпиада, Арнольд В.Д., 2003Фрагмент из книги.
В стране 15 городов, некоторые из них соединены авиалиниями, принадлежащими трём авиакомпаниям. Известно, что даже если любая из авиакомпаний прекратит полёты, можно будет добраться из любого города в любой другой (возможно, с пересадками), пользуясь рейсами оставшихся двух компаний. Какое наименьшее количество авиалиний может быть в стране?
Другие статьи...
- LXV Московская математическая олимпиада, Арнольд В.Д., 2002
- LXIV Московская математическая олимпиада, Арнольд В.Д., 2001
- Задачи олимпиады по математике 2022 года, Галанова Н.Ю., Гензе Л.В., Гриншпон Я.С., Лазарева Е.Г., Лобода Ю.А., Путятина Е.Н., Тимошенко Е.А., 2022
- Открытая олимпиада по математике имени заслуженного учителя РФ Д.Н. Хомякова, Сборник задач, 2009-2015 г, Марков А.В., Шестакова Л.В., Пересыпкин В.Н., 2015
- Задачи Санкт-Петербургской олимпиады школьников по математике 2020 года, Кохась К.П., Ростовский Д.А., Храбров А.И., 2021
- Московская математическая олимпиада, Задачи и решения, 2019
- Алгебра, Углубленный курс с решениями и указаниями, Золотарёва Н.Д., Попов Ю.А., Сазонов В.В., Семендяева Н.Л., Федотов М.В., 2015
- Экономические олимпиады для школьников, математика, Десницкая В.Н., Дмитриев В.Г., Савинов Г.В., 2017
Показана страница 4 из 7