Глубокое обучение на Python, Шолле Ф., 2018.
Глубокое обучение — Deep learning — это набор алгоритмов машинного обучения, которые моделируют высокоуровневые абстракции в данных, используя архитектуры, состоящие из множества нелинейных преобразований. Согласитесь, эта фраза звучит угрожающе. Но всё не так страшно, если о глубоком обучении рассказывает Франсуа Шолле, который создал Keras — самую мощную библиотеку для работы с нейронными сетями. Познакомьтесь с глубоким обучением на практических примерах из самых разнообразных областей. Книга делится на две части: в первой даны теоретические основы, вторая посвящена решению конкретных задач. Это позволит вам не только разобраться в основах DL, но и научиться использовать новые возможности на практике.
Обучение — это путешествие длиной в жизнь, особенно в области искусственного интеллекта, где неизвестностей гораздо больше, чем определенности.
Машинное обучение.
В викторианской Англии жила леди Ада Лавлейс (Ada Lovelace) — друг и соратник Чарльза Бэббиджа (Charles Babbage), изобретателя аналитической вычислительной машины: первого известного механического компьютера. Несомненно, аналитическая машина опередила свое время, но она не задумывалась как универсальный компьютер, когда разрабатывалась в 1830-х и 1840-х, потому что идея универсальных вычислений еще не родилась. Эта машина просто давала возможность использовать механические операции для автоматизации некоторых вычислений из области математического анализа, что и обусловило такое ее название. В 1843 году Ада Лавлейс заметила: «Аналитическая машина не может создавать что-то новое. Она может делать все, что мы и сами знаем, как выполнять... ее цель состоит лишь в том, чтобы помогать нам осуществлять то, с чем мы уже хорошо знакомы».
Позднее пионер ИИ Алан Тьюринг (Alan Turing) в своей знаменитой статье «Computing Machinery and Intelligence» назвал это замечание «аргументом Ады Лавлейс». В этой статье был представлен тест Тьюринга, а также перечислены основные идеи, которые могут привести к созданию ИИ. Тьюринг цитировал Аду Лавлейс, размышляя над способностью обычных компьютеров к самообучению и созданию чего-либо нового, и пришел к выводу, что да, могут.
Область машинного обучения возникла из вопроса: может ли компьютер выйти за рамки того, «что мы и сами знаем, как выполнять», и самостоятельно научиться решать некоторую определенную задачу? Может ли компьютер удивить нас? Может ли компьютер без помощи программиста, задающего правила обработки данных, автоматически определить эти правила, исследуя данные?
Содержание.
ЧАСТЬ I. ОСНОВЫ ГЛУБОКОГО ОБУЧЕНИЯ.
Глава 1. Что такое глубокое обучение?.
Глава 2. Прежде чем начать: математические основы нейронных сетей.
Глава 3. Начало работы с нейронными сетями.
Глава 4. Основы машинного обучения.
ЧАСТЬ II. ГЛУБОКОЕ ОБУЧЕНИЕ НА ПРАКТИКЕ.
Глава 5. Глубокое обучение в технологиях компьютерного зрения.
Глава 6. Глубокое обучение для текста и последовательностей.
Глава 7. Лучшие практики глубокого обучения продвинутого уровня.
Глава 8. Генеративное глубокое обучение.
Глава 9. Заключение.
Приложение А. Установка Keras и его зависимостей в Ubuntu.
Приложение В. Запуск Jupyter Notebook на экземпляре ЕС2 GPU.
Купить .
Теги: учебник по программированию :: программирование :: Шолле
Смотрите также учебники, книги и учебные материалы:
- Стандартная библиотека Python 3, справочник с примерами, Хеллман Д., 2019
- Грокаем глубокое обучение, Траск Э., 2019
- Head First, Программирование для Android, Гриффитс Д., 2018
- Глубокое обучение, Погружение в мир нейронных сетей, Николенко С., Кадурин А., Архангельская Е., 2018
- Прагматичный ИИ, Машинное обучение и облачные технологии, Гифт Н., 2019
- Вероятностное программирование на Python, Байесовский вывод и алгоритмы, Дэвидсон-Пайлон К., 2019
- Введение в машинное обучение с помощью Python, Мюллер А., Гвидо С., 2017
- Секреты Python, 59 рекомендаций по написанию эффективного кода, Слаткин Б., 2016