Учебное пособие соответствует требованиям Государственного образовательного стандарта к профессиональным образовательным программам по направлениям подготовки: 521500 - "Менеджмент", 521600 - "Экономика", 522200 - "Статистика", - и специальностям: 060100 - "Экономическая теория", 060400 - "Финансы и кредит", 060500 - "Бухгалтерский учет, анализ и аудит", 061100 - "Менеджмент организации", 061500 - "Маркетинг", 061700 - "Статистика", 061800 - "Математические методы в экономике", 062100 - "Управление персоналом", 351400 - "Прикладная информатика (в экономике)". В пособие включены разделы математической статистики: "Описательная статистика", "Предварительный анализ данных", "Корреляционный анализ.
Для преподавателей ВУЗов и студентов.
Данное учебное пособие явилось результатом многолетнего опыта автора в преподавании курса «Математическая статистика» студентам экономических специальностей. Особенность пособия -его прикладная направленность. Все практические примеры в пособии взяты из области экономики или управления социальными и экономическими системами.
Основная цель данного учебного пособия - научить студентов анализировать и идентифицировать исследуемую прикладную задачу, выбирать адекватные методы ее решения, решать задачу, интерпретировать результаты в терминах прикладной области и прогнозировать поведение исследуемого процесса при изменении влияющих факторов.
В пособие включены лишь некоторые разделы математической статистики, призванные сформировать теоретическую базу и практические навыки, которые могут быть использованы студентами как в будущей профессиональной деятельности, так и при последующем изучении таких дисциплин, как «Статистика», «Эконометрика» и др.
СОДЕРЖАНИЕ
Общие сведения
Материальные объекты. Их вероятностная природа
Этапы решения задачи описания эмпирических данных вероятностными моделями
1. Описательная статистика. Основные понятия выборочного метода
1.1. Основные понятия математической статистики. Задачи математической статистики
1.2. Этапы статистической обработки эмпирических данных с использованием компьютера
1.3. Оценивание характеристик случайных величин
1.3.1. Оценивание функционных характеристик
1.3.2. Оценивание числовых характеристик
1.4. Интервальное оценивание числовых характеристик случайны) величин
1.4.1. Асимптотические свойства оценок
1.4.2. Постановка задачи интервального оценивания характеристик случайных величин. Основные понятия
1.4.3. Построение доверительных интервалов для математического ожидания
1.4.3.1. Построение доверительного интервала для математического ожидания при известной дисперсии
1.4.3.2. Построение доверительного интервала для математического ожидания при неизвестной дисперсии
1.4.4. Построение доверительных интервалов для дисперсии
1.4.4.1. Построение доверительного интервала для дисперсии при известном математическом ожидании
1.4.4.2. Построение доверительного интервала для дисперсии при неизвестном математическом ожидании
2. Описание эмпирических данных вероятностными моделями
2.1. Постановка задачи структурной и параметрической идентификации
2.2. Типовые вероятностные модели одномерных непрерывных законов распределения. Общие сведения
2.2.1. Нормальное (Муавра - Лапласа - Гаусса) распределение
2.2.2. Экспоненциальное (показательное) распределение
2.2.3. Равномерное (прямоугольное) распределение
2.2.4. t-распределение Стьюдента
2.2.5. Распределение хи-квадрат
2.2.6. Распределение Фишера
2.3. Упорядочение моделей. Метод плоскости моментов
2.4. Статистическое оценивание параметров
2.4.1. Метод моментов
2.4.2. Метод максимального правдоподобия
3. Предварительный анализ данных. Статистические критерии проверки гипотез
3.1. Постановка задачи. Общая логическая схема статистического критерия проверки гипотез
3.2. Проверка гипотез о равенстве числовых характеристик случайных величин
3.2.1. Проверка гипотез о равенстве дисперсий случайной величины при известных математических ожиданиях
3.2.2. Проверка гипотез о равенстве дисперсий случайной величины при неизвестных математических ожиданиях
3.2.3. Проверка гипотез о равенстве математических ожиданий случайных величин при известных дисперсиях
3.2.4. Проверка гипотез о равенстве математических ожиданий случайных величии при неизвестных дисперсиях
3.3. Проверка гипотез об однородности двух или нескольких выборок
3.3.1. Проверка гипотез об однородности двух выборок по критерию у2
3.3.2. Проверка гипотез об однородности двух выборок по критерию Вилкоксона - Манна - Уитни
3.4. Проверка гипотез о стохастической независимости элементов выборки
3.4.1. Критерий серий, основанный на медиане
3.4.2. Критерий «восходящих» и «нисходящих» серий
3.4.3. Критерий стохастической независимости Аббе
3.5. Проверка гипотез о согласии эмпирического распределения и выбранной модели
3.5.1. Критерий согласия х2 - Пирсона
3.5.2. Критерий согласия Колмогорова-Смирнова
4. Анализ статистической связи. Корреляционный анализ
4.1. Общие сведения. Задачи корреляционного анализа
4.2. Анализ статистической связи между количественными переменными. Измерение парных статистических связей
4.2.1. Коэффициент корреляции
4.2.1.1. Оценивание и свойства коэффициента корреляции
4.2.1.2. Проверка гипотезы об отсугегвии линейной статистической связи
4.2.1.3. Доверительные интервалы для иегинного значения коэффициента корреляции
4.2.2. Корреляционное отношение
4.2.2.1. Оценивание и свойства корреляционного отношения
4.2.2.2. Проверка гипотезы об отсутствии нелинейной корреляционной связи
4.2.3. Частный коэффициент корреляции
4.3. Анализ статистических связей между порядковыми переменными. Ранговая корреляция
4.3.1. Общие сведения
4.3.2. Оценивание парных ранговых связей
4.3.2.1. Ранговый коэффициент корреляции Спирмэна
4.3.2.2. Ранговый коэффициент корреляции Кендалла
4.3.3. Анализ множественных ранговых связей
4.3.3.1. Коэффициент конкордации
4.3.3.2. Проверка статической значимости множественной связи
Приложения
Функция стандартного нормального распределения
Процентные точки распределения Стыодента
Процентные точки распределения хи-квадрат
Процентные точки распределения Фишера
Критические точки статистики критерия Вилкоксона
Критерий Аббе
Таблица значений функции Колмогорова
Преобразование Фишера (z-преобразование) выборочного коэффициента корреляции
Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Математическая статистика для экономистов, Никитина Н.Ш., 2001 - fileskachat.com, быстрое и бесплатное скачивание.
Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу
Скачать книгу Математическая статистика для экономистов, Никитина Н.Ш., 2001 - Яндекс Народ Диск.
Скачать книгу Математическая статистика для экономистов, Никитина Н.Ш., 2001 - depositfiles.
Дата публикации:
Теги: учебник по экономике :: экономика :: Никитина :: распределение Стьюдента
Смотрите также учебники, книги и учебные материалы:
Следующие учебники и книги:
- Маэстро бума, Уроки Японии, Гринспен А., Ротбард М., 2003
- Математические методы моделирования экономических систем, Бережная, Бережной, 2006
- Математические методы и модели в экономике, Минюк С.А., Ровба Е.А., Кузьмич К.К., 2002
- Математическая экономика, лабораторный практикум, Мицель А.А., 2006
Предыдущие статьи:
- Макроэкономика, Краткий курс, Луссе А.В., 1999
- Макроэкономика, Базылев Н.И., Гурко С.П., Базылева М.Н., 2004
- Инвестиционная стратегия, Чернов В.А., 2003
- Диагностика кризисного состояния предприятия, Фомин Я.А., 2004