Автор: Ильин В.А., Позняк Э.Г.
Один из выпусков "Курса высшей математики и математической физики" под редакцией А.Н.Тихонова. В.А.Ильина. А.Г.Свешникова.
Учебник создан на базе лекций, читавшихся авторами в течение ряда лет на физическом факультете и на факультете вычислительной математики и кибернетики Московского государственного университета.
Часть I включает теорию вещественных чисел, теорию пределов и непрерывности функций, дифференциальное и интегральное исчисление функций одной переменной, теорию числовых рядов, дифференциальное исчисление функций многих переменных.
Для студентов высших учебных заведений, обучающихся по специальностям "Физика" и "Прикладная математика".
После многих лет преподавания математического анализа возникло намерение изменить указанную концепцию, что в последние годы воплощается при чтении лекционных курсов.
Однако многие математики, использующие этот учебник, в беседе со мной не советовали мне этого делать, убеждая меня в том, что тем самым я испорчу хорошо зарекомендовавший себя учебник.
Учитывая это мнение и тот факт, что эта книга рекомендована Ученым Советом МГУ к изданию в серии «Классический университетский учебник», приуроченный к 250-летию МГУ, я решил сохранить в этом издании указанную концепцию изложения.
СОДЕРЖАНИЕ
Предисловие к седьмому изданию 15
Предисловие к пятому изданию 16
Предисловие к первому изданию 17
Глава 1. Предварительные сведения об основных понятиях математического анализа 19
§ 1. Математические понятия, возникающие при описании движения 19
§ 2 Мгновенная скорость и связанные с ней новые математические понятия 22
§ 3 Задача о восстановлении закона движения по скорости и связанная с ней математическая проблематика 29
§ 4 Проблемы, возникающие при решении задачи о вычислении пути 31
§ 5 Заключительные замечания 35
Глава 2. Теория вещественных чисел 37
§ 1. Вещественные числа 37
§ 2 Арифметические операции над вещественными числами. Основные свойства вещественных чисел 50
§ 3. Некоторые конкретные множества вещественных чисел 56
Дополнение 1. О переводе чисел из десятичной системы счисления в двоичную и из двоичной системы в десятичную 57
Дополнение 2. Об ошибках в округлении чисел в системах счисления с четным и нечетным основаниями 59
Глава 3. Предел последовательности 61
§ 1. Числовые последовательности 61
§ 2. Сходящиеся последовательности и их основные свойства 67
§ 3. Монотонные последовательности 73
§ 4. Некоторые свойства произвольных последовательностей и числовых множеств 79
Дополнение 1. Теорема Штольца 93
Дополнение 2. О скорости сходимости последовательности приближающей л/а 96
Глава 4. Понятие функции. Предельное значение функции. Непрерывность 100
§ 1. Понятие функции 100
§ 2. Понятие предельного значения функции 103
§ 3. Понятие непрерывности функции 110
§ 4. Некоторые свойства монотонных функций 113
§ 5. Простейшие элементарные функции 117
§ 6. Предельные значения некоторых функций 133
§ 7. Непрерывность и предельные значения некоторых сложных функций 138
§ 8. Классификация точек разрыва функции 143
Дополнение. Доказательство утверждения из п.6§ 5 146
Глава 5. Основы дифференциального исчисления 156
§ 1. Производная. Ее физическая и геометрическая интерпретация 156
§ 2. Понятие дифференцируемости функции 162
§ 3. Правила дифференцирования суммы, разности, произведения и частного 166
§ 4. Вычисление производных степенной функции, тригонометрических функций и логарифмической функции 168
§ 5. Теорема о производной обратной функции 171
§ 6. Вычисление производных показательной функции и обратных тригонометрических функций 173
§ 7. Правило дифференцирования сложной функции 175
§ 8. Логарифмическая производная. Производная степенной функции с любым вещественным показателем. Таблица производных простейших элементарных функций 177
§ 9. Инвариантность формы первого дифференциала. Некоторые применения дифференциала 179
§ 10. Производные и дифференциалы высших порядков 183
§ 11. Дифференцирование функции, заданной параметрически 188
Глава 6. Неопределенный интеграл 190
§ 1. Понятие первообразной функции и неопределенного интеграла 190
§ 2. Основные методы интегрирования 196
Глава 7. Комплексные числа. Алгебра многочленов. Интегрирование в элементарных функциях 203
§ 1. Краткие сведения о комплексных числах 203
§ 2. Алгебраические многочлены 207
§ 3. Кратные корни многочлена. Признак кратности корня 210
§ 4. Принцип выделения кратных корней. Алгоритм Евклида 212
§ 5. Разложение правильной рациональной дроби с комплексными коэффициентами на сумму простейших дробей 215
§ 6. Разложение алгебраического многочлена с вещественными коэффициентами на произведение неприводимых вещественных множителей 217
§ 7. Разложение правильной рациональной дроби с вещественными коэффициентами на сумму простейших дробей с вещественными коэффициентами 220
§ 8. Проблема интегрирования рациональной дроби 225
§ 9. Метод Остроградского 228
§ 10. Интегрирование некоторых иррациональных и трансцендентных выражений 231
§ 11. Эллиптические интегралы 245
Глава 8. Основные теоремы о непрерывных и дифференцируемых функциях 247
§ 1. Новое определение предельного значения функции 247
§ 2. Локальная ограниченность функции, имеющей предельное значение 252
§ 3. Теорема об устойчивости знака непрерывной функции 254
§ 4. Прохождение непрерывной функции через любое промежуточное значение 255
§ 5. Ограниченность функции, непрерывной на сегменте 256
§ 6. Точные грани функции и их достижение функцией, непрерывной на сегменте 257
§ 7. Возрастание (убывание) функции в точке. Локальный максимум (минимум) 260
§ 8. Теорема о нуле производной 262
§ 9. Формула конечных приращений (формула Лагранжа) 263
§ 10. Некоторые следствия из формулы Лагранжа 264
§ 11. Обобщенная формула конечных приращений (формула Коши) 269
§ 12. Раскрытие неопределенностей (правило Лопиталя) 270
§ 13. Формула Тейлора 275
§ 14. Различные формы остаточного члена. Формула Маклорена 278
§ 15. Оценка остаточного члена. Разложение некоторых элементарных функций 281
§ 16. Примеры приложений формулы Маклорена 285
Дополнение. Вычисление элементарных функций 290
Глава 9. Геометрическое исследование графика функции. Нахождение максимального и минимального значений функции 300
§ 1. Участки монотонности функции. Отыскание точек экстремума 300
§ 2. Направление выпуклости графика функции 308
§ 3. Точки перегиба графика функции 310
§ 4. Третье достаточное условие экстремума и перегиба 315
§ 5. Асимптоты графика функции 318
§ 6. Схема исследования графика функции 320
§ 7. Отыскание максимального и минимального значений функции. Краевой экстремум 323
Глава 10. Определенный интеграл 327
§ 1. Интегральные суммы. Интегрируемость 327
§ 2. Верхние и нижние суммы 330
§ 3. Необходимое и достаточное условие интегрируемости 335
§ 4. Некоторые классы интегрируемых функций 337
§ 5. Основные свойства определенного интеграла 344
§ 6. Оценки интегралов. Формулы среднего значения 347
§ 7. Существование первообразной для непрерывной функции. Основные правила интегрирования 352
Дополнение 1. Некоторые важные неравенства для сумм и интегралов 360
Дополнение 2. Доказательство утверждения из п. 4 § 6 368
Глава 11. Геометрические и физические приложения определенного интеграла 368
§ 1. Длина дуги кривой 368
§ 2. Площадь плоской фигуры 383
§ 3. Объемы тел и площади поверхностей 390
§ 4. Некоторые физические приложения определенного интеграла 395
Дополнение. Пример неквадрируемой фигуры 397
Глава 12. Приближенные методы вычисления корней уравнений и определенных интегралов 402
§ 1. Приближенные методы вычисления корней уравнений 402
§ 2. Приближенные методы вычисления определенных интегралов 414
Глава 13. Теория числовых рядов 426
§ 1. Понятие числового ряда 426
§ 2. Ряды с положительными членами 432
§ 3. Абсолютно и условно сходящиеся ряды 445
§ 4. Арифметические операции над сходящимися рядами 453
§ 5. Признаки сходимости произвольных рядов 454
§ 6. Бесконечные произведения 460
Дополнение 1. Вспомогательная теорема для п.3§2 466
Дополнение 2. Разложение функции sin ж в бесконечное произведение 467
Дополнение 3. Обобщенные методы суммирования расходящихся рядов 470
Глава 14. Функции нескольких переменных 475
§ 1. Понятие функции нескольких переменных 475
§ 2. Предельное значение функции нескольких переменных 483
§ 3. Непрерывные функции нескольких переменных 490
§ 4. Производные и дифференциалы функции нескольких переменных 497
§ 5. Частные производные и дифференциалы высших порядков 513
§ 6. Локальный экстремум функции т переменных 531
§ 7. Градиентный метод поиска экстремума сильно выпуклой функции 543
Дополнение. О выборе оптимального разбиения сегмента для приближенного вычисления интеграла 565
Глава 15. Теория неявных функций и ее приложения 568
§ 1. Понятие неявной функции 568
§ 2. Теорема о существовании и дифференцируемости неявной функции и некоторые ее применения 569
§ 3. Неявные функции, определяемые системой функциональных уравнений 580
§ 4. Зависимость функций 587
§ 5. Условный экстремум 594
Дополнение. Замена переменных 602
Глава 16. Некоторые геометрические приложения дифференциального исчисления 606
§ 1. Огибающая и дискриминантная кривая однопараметрического семейства плоских кривых 606
§ 2. Соприкосновение плоских кривых 615
§ 3. Кривизна плоской кривой 622
§ 4. Эволюта и эвольвента 627
Приложение. Дальнейшее развитие теории вещественных чисел 632
Предметный указатель 642
Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Основы математического анализа - часть 1 - Ильин В.А., Позняк Э.Г. - fileskachat.com, быстрое и бесплатное скачивание.
Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу
Скачать книгу Основы математического анализа - часть 1 - Ильин В.А., Позняк Э.Г. - depositfiles
Скачать книгу Основы математического анализа - часть 1 - Ильин В.А., Позняк Э.Г. - letitbit
Дата публикации:
Теги: учебник по математическому анализу :: математический анализ :: Ильин :: Позняк :: вещественные числа :: метод Остроградского
Смотрите также учебники, книги и учебные материалы:
Следующие учебники и книги:
- Теория вероятностей и ее инженерные приложения - Вентцель Е.С., Овчаров Л.А.
- Теория вероятностей - Вентцель Е.С.
- Теория вероятностей и математическая статистика - Пугачев В.С.
- Теория вероятностей и математическая статистика - Андронов А.М., Копытов Е.А., Гринглаз Л.Я.
Предыдущие статьи:
- Курс теории вероятностей - Гнеденко Б.В.
- Теория вероятностей - Математическая статистика - Бочаров П.П., Печинкин А.В.
- Теория статистики с основами теории вероятностей - Елисеева И.И.
- Теория вероятностей и математическая статистика - Баврин И.И.