Математика и логика, Ретроспектива и перспективы, Кац М., Улам С., 1971.
Книга видных американских ученых Марка Каца и Станислава Улама (оба автора хорошо известны советскому читателю по переводу ряда других их книг и старей) была подготовлена для выпускаемой издательством Британской энциклопедии серии обзоров, посвященных состоянию и ближайшим перспективам развития различных наук. Рассчитанная на широкий круг читателей, книга ставит своей целью освещение современного состояния математики, и ее специфических черт. Особое место уделяется взаимодействию и взаимозависимости математики и других наук, обогащающих, по мнению авторов, как чистую математику, так и все использующие математические методы направления научной мысли, а также обсуждению возможного будущего математики.
Интересная по содержанию и блестящая по форме книга М. Каца и С. Улама бесспорно привлечет внимание читателей самых разных кругов.
Улам
Математика и логика, Ретроспектива и перспективы, Кац М., Улам С., 1971
Скачать и читать Математика и логика, Ретроспектива и перспективы, Кац М., Улам С., 1971Нерешенные математические задачи, Улам С.М., 1964
Нерешенные математические задачи, Улам С.М., 1964.
Набору задач, составляющему содержание этой книги, необходимо, может быть, предпослать более подробное введение, чем обычной математической монографии. Эти задачи рассматриваются как нерешенные в том смысле, что автор не знает их решений. В этом смысле данный небольшой сборник по своему характеру существенно отличается от хорошо известного сборника задач Пойа и Сеге [1].
Вопросы, взятые из различных областей математики, ни в коей мере не являются центральными для этих областей, а, скорее, отражают личные интересы автора.
Скачать и читать Нерешенные математические задачи, Улам С.М., 1964Набору задач, составляющему содержание этой книги, необходимо, может быть, предпослать более подробное введение, чем обычной математической монографии. Эти задачи рассматриваются как нерешенные в том смысле, что автор не знает их решений. В этом смысле данный небольшой сборник по своему характеру существенно отличается от хорошо известного сборника задач Пойа и Сеге [1].
Вопросы, взятые из различных областей математики, ни в коей мере не являются центральными для этих областей, а, скорее, отражают личные интересы автора.