учебник по математике

Проблемы изоморфизма плотного и дискретного пространств Гильберта, монография, Грицутенко С.С., 2012

Проблемы изоморфизма плотного и дискретного пространств Гильберта, Монография, Грицутенко С.С., 2012.
 
   Написана на основе многолетних исследований в области цифровой обработки сигналов. Основная задача - разрешить некоторые проблемы, обусловленные допущениями и упрощениями, положенными в основу существующего математического аппарата этой технической дисциплины. Для понимания изложенного материала требуются начальные знания в области математического анализа, алгебры и теории вероятностей.
Монография состоит из трех глав: в первой рассматриваются вопросы дискретизации, во второй обсуждается квантование, третья посвящена быстрым алгоритмам.
Предназначена для студентов вузов, аспирантов и специалистов в области цифровой обработки сигналов.

Проблемы изоморфизма плотного и дискретного пространств Гильберта, Монография, Грицутенко С.С., 2012
Скачать и читать Проблемы изоморфизма плотного и дискретного пространств Гильберта, монография, Грицутенко С.С., 2012
 

Численное решение задач теплопроводности и конвективного теплообмена при течении в каналах, Патанкар С.В., 2003

Численное решение задач теплопроводности и конвективного теплообмена при течении в каналах, Патанкар С.В., 2003.
 
   В книге детально описываются разработанная автором программа CONDUCT, класс решаемых уравнений и разнообразные физические задачи, доступные численному анализу. Книга содержит 15 примеров, в каждом из которых внимание читателя заостряется на одном-двух важных приемах применения CONDUCT. Методически безупречное постепенное усложнение задач и подробный анализ всех тонкостей применения программы способствуют глубокому усвоению материала.

Численное решение задач теплопроводности и конвективного теплообмена при течении в каналах, Патанкар С.В., 2003
Скачать и читать Численное решение задач теплопроводности и конвективного теплообмена при течении в каналах, Патанкар С.В., 2003
 

Современные проблемы эргодической теории, Синай Я.Г., 1995

Современные проблемы эргодической теории, Синай Я.Г., 1995.

   Содержит изложение основных общих понятий и конструкций эргодической теории и их применение для анализа различных классов гладких динамических систем, включая одномерные отображения, гиперболические динамические системы и динамические системы статистической механики.
Для студентов и научных работников—математиков и физиков-теоретиков.

Современные проблемы эргодической теории, Синай Я.Г., 1995
Скачать и читать Современные проблемы эргодической теории, Синай Я.Г., 1995
 

Признаки делимости, Воробьев Н.Н., 1988

Признаки делимости, Воробьев Н.Н., 1988.

   В брошюре систематически и с общей точки зрения описываются признаки делимости. Это дает автору повод популярно изложить некоторые вопросы элементарной теории чисел, теории отношений и теории алгорифмов.
Предназначается для учащихся старших классов средней школы.

Признаки делимости, Воробьев Н.Н., 1988
Скачать и читать Признаки делимости, Воробьев Н.Н., 1988
 

Теория чисел, Михелович Ш.Х., 1967

Теория чисел, Михелович Ш.Х., 1967.

   Книга написана в качестве учебного пособия по курсу теории чисел для физико-математических факультетов педагогических институтов и предназначается не только для студентов стационара, но и заочных факультетов. Поэтому изложение проводится по возможности в доступной форме, причем особое внимание уделяется разъяснению вводимых понятий.
Материал книги в основном излагается в объеме, предусмотренном программой, и в той же последовательности.
Несколько подробнее рассмотрены «Числовые функции». Это сделано потому, что эта область теории чисел, ярко свидетельствующая о большом вкладе в науку русской и советской математических школ теории чисел, очень богата интересными для учителя вопросами. В остальном материал, выходящий за рамки программы, дается, как правило, обзорно.

Теория чисел, Михелович Ш.Х., 1967
Скачать и читать Теория чисел, Михелович Ш.Х., 1967
 

Теорема о раскраске карт, Рингель Г., 1977

Теорема о раскраске карт, Рингель Г., 1977.

   Каково наименьшее число цветов, достаточное для раскраски любом карты, изображенной на сфере, таким образом, чтобы соседние страны были окрашены в разные цвета? Эта знаменитая «проблема четырех красок» еще в конце прошлого века была обобщена на случай карт, расположенных на произвольных поверхностях. И хотя сама проблема четырех красок более ста лет оставалась нерешенной, задача о раскраске карт для всех ориентируемых поверхностей, отличных от сферы, была недавно решена. Полное решение этой задачи и составляет основу книги Г. Рингеля — известного специалиста в области теории графов, внесшего большой вклад в решение задачи о раскраске карт.
Книга написана доступно и будет полезна широкому кругу читателей, интересующихся современными проблемами математики.

Теорема о раскраске карт, Рингель Г., 1977
Скачать и читать Теорема о раскраске карт, Рингель Г., 1977
 

Тензорная тригонометрия, Теория и приложения, Нинул А.С., 2004

Тензорная тригонометрия, Теория и приложения, Нинул А.С., 2004.

   В монографии изложены основы тензорной тригонометрии, базирующейся на квадратичных метриках в многомерных арифметических пространствах. В теоретическом плане тензорная тригонометрия естественным образом дополняет классические разделы аналитической геометрии и линейной алгебры. В практическом плане она даёт инструментарий для решения разнообразных геометрических задач в многомерных аффинных, евклидовых и псевдоевклидовых пространствах. Движения, определяемые тензорной тригонометрией, задают геометрию в малом для вложенных в них подпространств постоянной кривизны.
Кроме того, тензорная ротационная и деформационная тригонометрия в элементарной форме применена к изучению движений в неевклидовых геометриях - сферической и гиперболической, а также в теории относительности. В результате получены наиболее общие - матричные, векторные и скалярные представления этих движений в весьма наглядной тригонометрической форме. Новые методы тензорной тригонометрии предназначены для применения в ряде областей математики и математической физики.
Для специалистов в областях многомерных геометрий арифметических пространств, аналитической геометрии, линейной алгебры, неевклидовых геометрий и теории относительности; для преподавателей, аспирантов и студентов физико-математических специальностей.

Тензорная тригонометрия, Теория и приложения, Нинул А.С., 2004
Скачать и читать Тензорная тригонометрия, Теория и приложения, Нинул А.С., 2004
 

Числа и фигуры, Радемахер Г., Теплиц О., 2000

Числа и фигуры, Радемахер Г., Теплиц О., 2000.

   Книга помогает читателю стать активным участником в математическом познании и творчестве. Явно отражено влияние, которое излагаемые здесь идеи оказывают на математику, рассмотрены приложения, которые одна область математики находит в другой. Стиль изложения книги понятен и доступен широкому кругу читателей.
Книга предназначена для школьников, учителей, а также для всех интересующихся математикой и ее развитием.

Числа и фигуры, Радемахер Г., Теплиц О., 2000
Скачать и читать Числа и фигуры, Радемахер Г., Теплиц О., 2000
 
Показана страница 65 из 515