учебник по математике

Элементарный курс теории вероятностей, Стохастические процессы и финансовая математика, Чжун К.Л., АитСахлиа Ф., 2014

Элементарный курс теории вероятностей, Стохастические процессы и финансовая математика, Чжун К.Л., АитСахлиа Ф., 2014.
 
   Перевод 4-го издания популярного учебника по теории вероятностей и ее приложениям, написанного известными американскими математиками из Станфордского университета. Четвертое издание дополнено двумя новыми главами, посвященными финансовой математике.
Для студентов, преподавателей, исследователей и практиков в экономике, психологии, социологии, медицине и в других областях, где используются статистические методы и теория вероятностей.

Элементарный курс теории вероятностей, Стохастические процессы и финансовая математика, Чжун К.Л., АитСахлиа Ф., 2014
Скачать и читать Элементарный курс теории вероятностей, Стохастические процессы и финансовая математика, Чжун К.Л., АитСахлиа Ф., 2014
 

Математика, 1 класс, Хилько А.А., 1999

Математика, 1 класс, Хилько А.А., 1999.
 
Фрагмент из книги:
В овощную палатку привезли 7 бочек с солёными огурцами и помидорами. 3 бочки были с солёными помидорами. Сколько бочек с солёными огурцами привезли в палатку? Почему задачу нужно решать вычитанием?

Математика, 1 класс, Хилько А.А., 1999
Скачать и читать Математика, 1 класс, Хилько А.А., 1999
 

Теория меры и тонкие свойства функций, Эванс Л.К., Гариепи Р.Ф., 2002

Теория меры и тонкие свойства функций, Эванс Л.К., Гариепи Р.Ф., 2002.
 
   Книга издана на английском языке (Measure Theory and Fine Properties of Functions, CRC PRESS, Roca Raton, Ann Arbo London) в 1992 г. Авторы дают систематическое изложение центральных результатов вещественного анализа на Rn, играющих первостепенную роль в теории дифференциальных уравнений с частными производными, геометрии и других разделах математики. На основе геометрической теории меры исследуются свойства функций различных функциональных классов Особое внимание уделяется вопросам интегрирования и дифференцирования. Среди обсуждаемых в книге вопросов — меры Хаусдорфа и емкости, теорема Радемахера (дифференцируемость почти всюду липшицевых функций), теорема Александрова (дважды дифференцируемость почти всюду выпуклых функций), замена переменных для липшищевых отображений Rn в Rm, свойства функций с ограниченной вариацией и множеств с конечным периметром и др.
Для студентов математических факультетов университетов, специалистов по математическому анализу, математической физике, а также математиков различных специальностей.

Теория меры и тонкие свойства функций, Эванс Л.К., Гариепи Р.Ф., 2002
Скачать и читать Теория меры и тонкие свойства функций, Эванс Л.К., Гариепи Р.Ф., 2002
 

Неархимедов анализ и его приложения, Хренников А.Ю., 2003

Неархимедов анализ и его приложения, Хренников А.Ю., 2003.
 
   Предлагаемая монография представляет собой краткое введение r анализ над неархимедовыми числовыми нолями и приложения этого анализа к теоретической физике (в частности, основам Qp-значной квантовой механики), теории вероятностей и обработке изображений.
Для научных работников и студентов старших курсов, специализирующихся в функциональном анализе, теории обобщенных функций, теории вероятностей, теоретической физике (квантовой теории и космологии), обработке изображений, моделировании биологических процессов.

Неархимедов анализ и его приложения, Хренников А.Ю., 2003
Скачать и читать Неархимедов анализ и его приложения, Хренников А.Ю., 2003
 

Комбинаторный анализ, Холл М., 1963

Комбинаторный анализ, Холл М., 1963.
 
   В комбинаторном анализе исходят из рассмотрения множеств дискретных элементов, к которым применяются комбинаторные операции упорядочения и выбора. Формирование общей теории комбинаторного анализа, способной охватить огромное количество задач, которые решаются в различных отделах математики применением комбинаторных суждений, еще не завершено. Литературы на русском языке по комбинаторному анализу еще нет.
Настоящая книга Маршалла Холла младшего — американского математика, известного советскому читателю по переводу его книги „Теория групп", — является обзором современного состояния теории комбинаторного анализа в области теорем перечисления и выбора, а также построения различных схем. Автор отметил задачи и направления, наиболее перспективные с его точки зрения. В тексте рассматриваются задачи из теории чисел, теории конечных групп, геометрии и топологии.
Книга представляет интерес для широкого круга математиков-специалистов, в особенности для тех, кто занимается прикладными вопросами и желает применить комбинаторный аппарат современной математики.

Комбинаторный анализ, Холл М., 1963
Скачать и читать Комбинаторный анализ, Холл М., 1963
 

Приложение цепных дробей и их обобщений к вопросам приближенного анализа, Хованский А.Н., 1956

Приложение цепных дробей и их обобщений к вопросам приближенного анализа, Хованский А.Н., 1956.
 
   В современной математике приближенное представление функций обычно разыскивается в виде многочленов от независимых переменных. В тех же случаях, когда нахождение таких многочленов затруднительно, применяются различные численные методы.
При этом сравнительно редко пользуются приближениями, являющимися дробно-рациональными функциями от независимых переменных.

Приложение цепных дробей и их обобщений к вопросам приближенного анализа, Хованский А.Н., 1956
Скачать и читать Приложение цепных дробей и их обобщений к вопросам приближенного анализа, Хованский А.Н., 1956
 

К теории общих дифференциальных операторов в частных производных, Хёрмандер Л., 1959

К теории общих дифференциальных операторов в частных производных, Хёрмандер Л., 1959.
 
   В статье Л. Хёрмандера изложен ряд глубоких и актуальных результатов в теории линейных уравнений с частными производными. В ней широко используются методы функционального анализа и, в частности, теории обобщенных функций. Эта работа будет интересна прежде всего математикам — студентам старших курсов, аспирантам и научным работникам, — а также всем тем, кто имеет дело с теорией уравнений с частными производными. Написана статья очень доступно.

К теории общих дифференциальных операторов в частных производных, Хермандер Л., 1959
Скачать и читать К теории общих дифференциальных операторов в частных производных, Хёрмандер Л., 1959
 

Теория графов, Харари Ф., 2003

Теория графов, Харари Ф., 2003.
 
   В последнее время теория графов привлекает все более пристальное внимание специалистов различных областей знания. Наряду с традиционными применениями ее в таких науках, как физика, электротехника, химия, она проникла и в науки, считавшиеся раньше далекими от нее, — экономику, социологию, лингвистику и др. Давно известны тесные контакты теории графов с топологией, теорией групп и теорией вероятностей. Особенно важная взаимосвязь существует между теорией графов и теоретической кибернетикой (особенно теорией автоматов, исследованием операций, теорией кодирования, теорией игр). Широко используется теория графов при решении различных задач на вычислительных машинах.
За последние годы тематика теории графов стала значительно разнообразней; резко увеличилось количество публикаций.
Предлагаемая книга написана одним из видных специалистов по дискретной математике. Несмотря на небольшой объем и конспективный характер изложения, книга достаточно полно освещает современное состояние теории графов. Она, безусловно, будет полезна студентам университетов и технических вузов и, несомненно, заинтересует широкие круги научных работников, занимающихся приложениями дискретной математики.

Теория графов, Харари Ф., 2003
Скачать и читать Теория графов, Харари Ф., 2003
 
Показана страница 20 из 488