Великая теорема Ферма, Арифметическое решение, Орлов П.М., 2009.
Размышления над решением равенства An=Xn+Yn в целых числах всегда выступали для автора в качестве своеобразного отдыха и вдохновения, поскольку были свободным полетом мысли. В научной литературе приходилось читать об алгебраическом доказательстве большой теоремы Ферма. Но это доказательство всегда было оторвано от теоремы Пифагора — «родной сестры» теоремы Ферма. Автору всегда хотелось найти общее решение равенства An=Xn+Yn в целых числах, где теорема Пифагора и большая теорема Ферма решались бы по единой методике. И такое арифметическое решение найти удалось.
Работа предназначается специалистам-математикам, преподавателям и студентам физико-математических вузов, а также любителям математики.
теорема Ферма
Великая теорема Ферма, Арифметическое решение, Орлов П.М., 2009
Скачать и читать Великая теорема Ферма, Арифметическое решение, Орлов П.М., 2009Последняя теорема Ферма для любителей, Рибенбойм П., 2003
Последняя теорема Ферма для любителей, Рибенбойм П., 2003.
Прекрасное введение в алгебраическую и элементарную теорию чисел, отличающееся широтой охвата материала. Автору, известному канадскому математику, удалось органично соединить строгость математических фактов с увлекательностью изложения более чем трехвековой истории изобретения искусных подходов к решению знаменитой последней теоремы Ферма. Приведен исторический очерк с указанием авторов «решений» проблемы и авторов опровержений.
Для всех интересующихся математикой, включая математиков-профессионалов, преподавателей и учащихся старших классов.
Скачать и читать Последняя теорема Ферма для любителей, Рибенбойм П., 2003Прекрасное введение в алгебраическую и элементарную теорию чисел, отличающееся широтой охвата материала. Автору, известному канадскому математику, удалось органично соединить строгость математических фактов с увлекательностью изложения более чем трехвековой истории изобретения искусных подходов к решению знаменитой последней теоремы Ферма. Приведен исторический очерк с указанием авторов «решений» проблемы и авторов опровержений.
Для всех интересующихся математикой, включая математиков-профессионалов, преподавателей и учащихся старших классов.
Большая теорема Ферма и психология творчества, монография, Калошина И.П., 2012
Большая теорема Ферма и психология творчества, Монография, Калошина И.П., 2012.
В книге представлен подход к теоретической разработке общего метода анализа теоремы Ферма для любого простого нечетного показателя, большего или равного трем, и его применение к доказательству ряда частных случаев теоремы. Метод проиллюстрирован рисунками и основан на положениях элементарной математики, а также общих законах строения (структуры) любой деятельности, изучаемых в психологии. Установлены подмножества чисел, которые подчиняются теореме Ферма. Изложены также трудности в применении общего метода анализа (в отдельных частных случаях), преодоление которых позволит доказать теорему Ферма в целом. Предложены некоторые направления устранения указанных трудностей. Показана взаимосвязь разработанного общего метода анализа с методом «спуска», созданным Ферма для доказательства теоремы при показателе «четыре» и примененным последующими исследователями для показателей «три», «пять», «семь».
Книга адресована математикам, психологам, инженерам, преподавателям вузов (соответствующих профилей) и студентам, а также школьникам старших классов.
Скачать и читать Большая теорема Ферма и психология творчества, монография, Калошина И.П., 2012В книге представлен подход к теоретической разработке общего метода анализа теоремы Ферма для любого простого нечетного показателя, большего или равного трем, и его применение к доказательству ряда частных случаев теоремы. Метод проиллюстрирован рисунками и основан на положениях элементарной математики, а также общих законах строения (структуры) любой деятельности, изучаемых в психологии. Установлены подмножества чисел, которые подчиняются теореме Ферма. Изложены также трудности в применении общего метода анализа (в отдельных частных случаях), преодоление которых позволит доказать теорему Ферма в целом. Предложены некоторые направления устранения указанных трудностей. Показана взаимосвязь разработанного общего метода анализа с методом «спуска», созданным Ферма для доказательства теоремы при показателе «четыре» и примененным последующими исследователями для показателей «три», «пять», «семь».
Книга адресована математикам, психологам, инженерам, преподавателям вузов (соответствующих профилей) и студентам, а также школьникам старших классов.
Великие математики прошлого и их великие теоремы - Тихомиров В.М.
Название: Великие математики прошлого и их великие теоремы. 2003.
Автор: Тихомиров В.М.
В брошюре доказываются замечательные теоремы великих математиков прошлого – Архимеда (теорема об объеме шара), Ферма (теорема о представлении простых чисел в виде суммы двух квадратов натуральных чисел), Эйлера (равенство e^пi = –1), Лагранжа (теорема о представлении любого натурального числа в виде суммы четырех квадратов целых чисел) и Гаусса (теорема о построении циркулем и линейкой правильного семнадцатиугольника).
Текст брошюры представляет собой обработку записи лекции, прочитанной автором 30 октября 1999 года на Малом мехмате для школьников 9—11 классов (запись Е. Н. Осьмовой, обработка Р. М. Кузнеца).
Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей. (Первое издание — ноябрь 1999 года).
Скачать и читать Великие математики прошлого и их великие теоремы - Тихомиров В.М.Автор: Тихомиров В.М.
В брошюре доказываются замечательные теоремы великих математиков прошлого – Архимеда (теорема об объеме шара), Ферма (теорема о представлении простых чисел в виде суммы двух квадратов натуральных чисел), Эйлера (равенство e^пi = –1), Лагранжа (теорема о представлении любого натурального числа в виде суммы четырех квадратов целых чисел) и Гаусса (теорема о построении циркулем и линейкой правильного семнадцатиугольника).
Текст брошюры представляет собой обработку записи лекции, прочитанной автором 30 октября 1999 года на Малом мехмате для школьников 9—11 классов (запись Е. Н. Осьмовой, обработка Р. М. Кузнеца).
Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей. (Первое издание — ноябрь 1999 года).
История математики, том 2, Юшкевич А.П.
Название: История математики - Том 2. 1970.
Автор: Юшкевич А.П.
В настоящем сочинении изложена история математики до начала XIX в. Написанный коллективом советских ученых, этот труд отражает основные общие установки советской школы историков математики. Поступательное движение математики рассматривается не только как процесс создания все более совершенных идей и методов исследования пространственных форм и количественных отношений действительного мира, но и как социальное явление. Раз уже возникшие математические структуры всегда развиваются в той или иной мере самостоятельно, но это саморазвитие происходит в условиях и на основе практической деятельности людей и определяется, иногда непосредственно, иногда в конечном счете, потребностями общества.
Скачать и читать История математики, том 2, Юшкевич А.П.Автор: Юшкевич А.П.
В настоящем сочинении изложена история математики до начала XIX в. Написанный коллективом советских ученых, этот труд отражает основные общие установки советской школы историков математики. Поступательное движение математики рассматривается не только как процесс создания все более совершенных идей и методов исследования пространственных форм и количественных отношений действительного мира, но и как социальное явление. Раз уже возникшие математические структуры всегда развиваются в той или иной мере самостоятельно, но это саморазвитие происходит в условиях и на основе практической деятельности людей и определяется, иногда непосредственно, иногда в конечном счете, потребностями общества.