Ряды Фурье, Теория поля, Аналитические и специальные функции, Преобразование Лапласа, Романовский П.И., 1961.
Книга представляет собой учебное пособие для студентов высших технических учебных заведений по некоторым разделам высшей математики, выходящим за пределы основного курса.
Книга написана очень сжато, в конспективной форме. Она представляет интерес не только для студентов старших курсов, но также для аспирантов, инженеров и преподавателей.
ряд Тейлора
Ряды Фурье, Теория поля, Аналитические и специальные функции, Преобразование Лапласа, Романовский П.И., 1961
Скачать и читать Ряды Фурье, Теория поля, Аналитические и специальные функции, Преобразование Лапласа, Романовский П.И., 1961Высшая математика для начинающих и ее приложения к физике - Зельдович Я.Б.
Название: Высшая математика для начинающих и ее приложения к физике. 1963.
Автор: Зельдович Я.Б.
Книга «Высшая математика для начинающих и ее приложения к физике», написанная физиком-теоретиком академиком Я. Б. Зельдовичем, рассчитана на школьников старших классов, учащихся техникумов и лиц, занимающихся самообразованием, она может быть полезна и студентам 1-го курса вузов и втузов.
В книге в наиболее простой, наглядной и доступной форме объясняются основные понятия дифференциального и интегрального исчисления. Далее даются сведения, необходимые для практического применения высшей математики к задачам физики и техники. На основе высшей математики рассмотрено большое число физических вопросов: радиоактивный распад, ядерная цепная реакция, законы механики, в частности, реактивное движение и космическая скорость, молекулярное движение. Рассмотрены электрические явления и, в частности, теория колебаний, лежащая в основе радиотехники. Наряду с математическим исследованием очень подробно изложена физическая сущность рассматриваемых явлений.
Скачать и читать Высшая математика для начинающих и ее приложения к физике - Зельдович Я.Б.Автор: Зельдович Я.Б.
Книга «Высшая математика для начинающих и ее приложения к физике», написанная физиком-теоретиком академиком Я. Б. Зельдовичем, рассчитана на школьников старших классов, учащихся техникумов и лиц, занимающихся самообразованием, она может быть полезна и студентам 1-го курса вузов и втузов.
В книге в наиболее простой, наглядной и доступной форме объясняются основные понятия дифференциального и интегрального исчисления. Далее даются сведения, необходимые для практического применения высшей математики к задачам физики и техники. На основе высшей математики рассмотрено большое число физических вопросов: радиоактивный распад, ядерная цепная реакция, законы механики, в частности, реактивное движение и космическая скорость, молекулярное движение. Рассмотрены электрические явления и, в частности, теория колебаний, лежащая в основе радиотехники. Наряду с математическим исследованием очень подробно изложена физическая сущность рассматриваемых явлений.
Функции комплексного переменного: теория и практика, справочное пособие по высшей математике, том 4, Боярчук А.К., 2001
Функции комплексного переменного: теория и практика - Справочное пособие по высшей математике. Том 4 - Боярчук А.К. - 2001
Том 4 является логическим продолжением трех предыдущих ориентированных на практику томов и содержит более четырехсот подробно решенных задач, но при этом отличается более детальным изложением теоретических вопросов и может служить самостоятельным замкнутым курсом теории функций комплексного переменного. Помимо вопросов, обычно включаемых в курсы такого рода, в книге излагается ряд нестандартных - таких, как интеграл Ньютона-Лейбница и производная Ферма-Лагранжа.
Пособие предназначено для студентов, преподавателей и работников физико-математических, экономических и инженерно-технических специальностей, специалистов по прикладной математике, а также лиц, самостоятельно изучающих высшую математику.
Скачать и читать Функции комплексного переменного: теория и практика, справочное пособие по высшей математике, том 4, Боярчук А.К., 2001Том 4 является логическим продолжением трех предыдущих ориентированных на практику томов и содержит более четырехсот подробно решенных задач, но при этом отличается более детальным изложением теоретических вопросов и может служить самостоятельным замкнутым курсом теории функций комплексного переменного. Помимо вопросов, обычно включаемых в курсы такого рода, в книге излагается ряд нестандартных - таких, как интеграл Ньютона-Лейбница и производная Ферма-Лагранжа.
Пособие предназначено для студентов, преподавателей и работников физико-математических, экономических и инженерно-технических специальностей, специалистов по прикладной математике, а также лиц, самостоятельно изучающих высшую математику.
Теория функции комплексного переменного, Краткий курс, Хапланов М.Г., 1965
Теория функции комплексного переменного - Краткий курс - Хапланов М.Г. - 1965
В основу книги положена мысль о том, что цель включения теории функций комплексного переменного в учебный план педагогических институтов - углубить у будущих учителей математики знание элементарных функций, изучаемых и средней школе, и разъяснить им роль комплексных чисел в математике и ее приложениях. Поэтому большое внимание уделено элементарным функциям, точкам их разветвления, римановым поверхностям и конформным отображениям, совершаемым с помощью простейших функций.
В настоящей книге предполагается, что читатель уже изучал теорию комплексных чисел. Все же, чтобы облегчить ссылки, приводятся основные положения этой теории в такой форме, в какой они дальше будут использованы.
Купить бумажную или электронную книгу и скачать и читать Теория функции комплексного переменного, Краткий курс, Хапланов М.Г., 1965В основу книги положена мысль о том, что цель включения теории функций комплексного переменного в учебный план педагогических институтов - углубить у будущих учителей математики знание элементарных функций, изучаемых и средней школе, и разъяснить им роль комплексных чисел в математике и ее приложениях. Поэтому большое внимание уделено элементарным функциям, точкам их разветвления, римановым поверхностям и конформным отображениям, совершаемым с помощью простейших функций.
В настоящей книге предполагается, что читатель уже изучал теорию комплексных чисел. Все же, чтобы облегчить ссылки, приводятся основные положения этой теории в такой форме, в какой они дальше будут использованы.