Основы тензорного анализа и механика сплошной среды, Горшков А.Г., Рабинский Л.Н., Тарлаковский Д.В., 2000.
Учебник состоит из двух частей: тензорного исчисления и механики сплошной среды. В первой части рассмотрена алгебра тензоров на линейных пространствах и пространствах с квадратичной метрикой. Даны основные понятия об инвариантах. Тензорный анализ строится в произвольных точечных евклидовых пространствах с частичным использованием теория римановых пространств. Во второй части на основе аппарата тензорного анализа в произвольных криволинейных системах координат излагаются основные разделы механики сплошной среды: теория деформаций и напряжений, термодинамика, замкнутые системы и постановка соответствующих начально-краевых задач. Дается обоснование линеаризованных моделей. Приводятся примеры классических моделей сплошных сред.
Для студентов вузов, изучающих механику сплошных сред и ее разделы, а также аспирантов соответствующего профиля.
Рабинский
Основы тензорного анализа и механика сплошной среды, Горшков А.Г., Рабинский Л.Н., Тарлаковский Д.В., 2000
Скачать и читать Основы тензорного анализа и механика сплошной среды, Горшков А.Г., Рабинский Л.Н., Тарлаковский Д.В., 2000Основы тензорного анализа и механика сплошной среды, Горшков А.Г., Рабинский Л.H., Тарлаковский Д.В., 2000
Основы тензорного анализа и механика сплошной среды, Горшков А.Г., Рабинский Л.H., Тарлаковский Д.В., 2000.
Учебник состоит из двух частей: тензорного исчисления и механики сплошной среды. В первой части рассмотрена алгебра тензоров на линейных пространствах и пространствах с квадратичной метрикой. Даны основные понятия об инвариантах. Тензорный анализ строится в произвольных точечных евклидовых пространствах с частичным использованием теории римановых пространств. Во второй части на основе аппарата тензорного анализа в произвольных криволинейных системах координат излагаются основные разделы механики сплошной среды: теория деформаций и напряжений, термодинамика, замкнутые системы и постановка соответствующих начально-краевых задач. Дается обоснование линеаризованных моделей. Приводятся примеры классических моделей сплошных сред.
Для студентов вузов, изучающих механику сплошных сред и ее разделы, а также аспирантов соответствующего профиля.
Скачать и читать Основы тензорного анализа и механика сплошной среды, Горшков А.Г., Рабинский Л.H., Тарлаковский Д.В., 2000Учебник состоит из двух частей: тензорного исчисления и механики сплошной среды. В первой части рассмотрена алгебра тензоров на линейных пространствах и пространствах с квадратичной метрикой. Даны основные понятия об инвариантах. Тензорный анализ строится в произвольных точечных евклидовых пространствах с частичным использованием теории римановых пространств. Во второй части на основе аппарата тензорного анализа в произвольных криволинейных системах координат излагаются основные разделы механики сплошной среды: теория деформаций и напряжений, термодинамика, замкнутые системы и постановка соответствующих начально-краевых задач. Дается обоснование линеаризованных моделей. Приводятся примеры классических моделей сплошных сред.
Для студентов вузов, изучающих механику сплошных сред и ее разделы, а также аспирантов соответствующего профиля.
Волны в сплошных средах, Горшков А.Г., Медведский A.Л., Рабинский Л.Н., Тарлаковский Д.В., 2004
Волны в сплошных средах, Горшков А.Г., Медведский A.Л., Рабинский Л.Н., Тарлаковский Д.В., 2004.
Излагаются основы динамики сплошных сред. Дан единый взгляд на эту область науки, который должен помочь обучающемуся в его работе над сложными вопросами. При рассмотрении конкретных задач основное внимание уделяется моделям механики деформируемого твердого тела. Весь материал сопровождается примерами решения конкретных задач с соответствующими иллюстрациями.
Определяются фундаментальные понятия, дается классификация динамических процессов. Рассматриваются одномерные плоские, сферические и цилиндрические волны, а также одномерные динамические процессы в стержнях и тонких пластинах. Даны решения начальных задач для пространства и плоскости, стационарных и нестационарных двумерных задач для полуограниченных областей. Для облегчения чтения приведены различные модели сплошных сред, а также сведения об обобщенных функциях и их интегральных преобразованиях.
Для студентов, специализирующихся в области механики сплошных сред, а также для аспирантов соответствующего профиля.
Скачать и читать Волны в сплошных средах, Горшков А.Г., Медведский A.Л., Рабинский Л.Н., Тарлаковский Д.В., 2004Излагаются основы динамики сплошных сред. Дан единый взгляд на эту область науки, который должен помочь обучающемуся в его работе над сложными вопросами. При рассмотрении конкретных задач основное внимание уделяется моделям механики деформируемого твердого тела. Весь материал сопровождается примерами решения конкретных задач с соответствующими иллюстрациями.
Определяются фундаментальные понятия, дается классификация динамических процессов. Рассматриваются одномерные плоские, сферические и цилиндрические волны, а также одномерные динамические процессы в стержнях и тонких пластинах. Даны решения начальных задач для пространства и плоскости, стационарных и нестационарных двумерных задач для полуограниченных областей. Для облегчения чтения приведены различные модели сплошных сред, а также сведения об обобщенных функциях и их интегральных преобразованиях.
Для студентов, специализирующихся в области механики сплошных сред, а также для аспирантов соответствующего профиля.