Казарян

Природный камень в строительстве, обработка, дизайн, облицовочные работы, Казарян Ж.А., 2008

Природный камень в строительстве, обработка, дизайн, облицовочные работы, Казарян Ж.А., 2008.

Наиболее успешные современные фирмы, связанные с работами с применением природного камня чаще всего являются многопрофильными. Многие из них осуществляют весь цикл работ, начиная с добычи и обработки природного камня и кончая проектными, архитектурными и монтажными работами при использовании камня в строительстве и быту. Причем все этапы работ, связанные с природным камнем взаимосвязаны. Специалист по применению природного камня в строительстве должен учитывать весь объем информации по камню, начиная с карьера до строительной площадки. Исходя из этого, в настоящем справочнике дан весь комплекс работ и решений, связанных с использованием природного камня. В краткой форме даны характеристики каменных материалов, изделий из камня, описаны технологические процессы, оборудование и инструмент для обработки природного камня. Даны основные технологии облицовочных работ с применением природного камня, приведены характерные архитектурные и проектные решения по применению камня в строительстве. Приведен пример основных решений по облицовке гранитом и реставрации существующего здания.

Природный камень в строительстве, обработка, дизайн, облицовочные работы, Казарян Ж.А., 2008

Скачать и читать Природный камень в строительстве, обработка, дизайн, облицовочные работы, Казарян Ж.А., 2008
 

Действительный анализ в задачах, Ульянов П.Л., Бахвалов А.Н., Дьяченко М.И., Казарян К.С., Сифуэнтес П., 2005

Действительный анализ в задачах, Ульянов П.Л., Бахвалов А.Н., Дьяченко М.И., Казарян К.С., Сифуэнтес П., 2005.

    Книга является учебным пособием по действительному анализу. Все основные утверждения курса изложены в виде системы задач, снабженных полными решениями. Основное содержание книги составляет изложение теории меры и интеграла Лебега.
Для студентов и аспирантов физико-математических специальностей, в том числе для самостоятельного изучения курса действительного анализа, а также для преподавателей, ведущих по этому курсу семинарские занятия.

Действительный анализ в задачах, Ульянов П.Л., Бахвалов А.Н., Дьяченко М.И., Казарян К.С., Сифуэнтес П., 2005
Скачать и читать Действительный анализ в задачах, Ульянов П.Л., Бахвалов А.Н., Дьяченко М.И., Казарян К.С., Сифуэнтес П., 2005
 

Алгебраические кривые, По направлению к пространствам модулей, Казарян М.Э., Ландо С.К., Прасолов В.В., 2019

Алгебраические кривые, По направлению к пространствам модулей, Казарян М.Э., Ландо С.К., Прасолов В.В., 2019.

В этой книге излагается теория комплексных алгебраических кривых и их семейств. Она содержит описание как классических результатов, так и недавних идей, связанных с геометрией пространства модулей кривых. Рекомендуется для студентов старших курсов математических и физических факультетов, аспирантов и научных работников, интересующихся математикой.

Алгебраические кривые, По направлению к пространствам модулей, Казарян М.Э., Ландо С.К., Прасолов В.В., 2019
Скачать и читать Алгебраические кривые, По направлению к пространствам модулей, Казарян М.Э., Ландо С.К., Прасолов В.В., 2019
 

Действительный анализ в задачах, Ульянов П.Л., Бахвалов А.Н., Дьяченко М.И., Казарян К.С., Сифуэнтес П., 2005

Действительный анализ в задачах, Ульянов П.Л., Бахвалов А.Н., Дьяченко М.И., Казарян К.С., Сифуэнтес П., 2005.
 
Книга является учебным пособием по действительному анализу. Все основные утверждения курса изложены в виде системы задач, снабженных полными решениями. Основное содержание книги составляет изложение теории меры и интеграла Лебега. Для студентов и аспирантов физико-математических специальностей, в том числе для самостоятельного изучения курса действительного анализа, а также для преподавателей, ведущих по этому курсу семинарские занятия.

Действительный анализ в задачах, Ульянов П.Л., Бахвалов А.Н., Дьяченко М.И., Казарян К.С., Сифуэнтес П., 2005
Скачать и читать Действительный анализ в задачах, Ульянов П.Л., Бахвалов А.Н., Дьяченко М.И., Казарян К.С., Сифуэнтес П., 2005
 

Дифференциальные формы, расслоения, связности, Казарян М.Э., 2002

Дифференциальные формы, расслоения, связности, Казарян М.Э., 2002.

  Брошюра написана по материалам цикла занятий, проведенных автором в Летней школе «Современная математика» в Дубне в июле 2001 года.
Читатель знакомится с основными понятиями дифференциальной геометрии — дифференциальными формами, расслоениями, метриками, связностями. При этом изложение ведется на языке, который не требует использования сложных формул с многоэтажными индексами, столь обычных для данного предмета.
Брошюра адресована старшим школьникам и младшим студентам.

Дифференциальные формы, расслоения, связности, Казарян М.Э., 2002
Скачать и читать Дифференциальные формы, расслоения, связности, Казарян М.Э., 2002
 

Курс дифференциальной геометрии, Казарян М.Э., 2002

Курс дифференциальной геометрии, Казарян М.Э., 2002.

  Брошюра написана по материалам цикла занятий, проведенных автором в Летней школе «Современная математика» в Дубне в июле 2001 года. Читатель знакомится с основными понятиями дифференциальной геометрии — дифференциальными формами, расслоениями, метриками, связностями. При этом изложение ведется на языке, который не требует использования сложных формул с многоэтажными индексами, столь обычных для данного предмета.
Брошюра адресована старшим школьникам и младшим студентам.

Курс дифференциальной геометрии, Казарян М.Э., 2002
Скачать и читать Курс дифференциальной геометрии, Казарян М.Э., 2002
 
Показана страница 2 из 2