Волевич

Метод многогранника Ньютона в теории дифференциальных уравнений в частных производных, Волевич Л.Р., Гиндикин С.Г., 2002

Метод многогранника Ньютона в теории дифференциальных уравнений в частных производных, Волевич Л.Р., Гиндикин С.Г., 2002.

   Монография посвящена разработке алгебраической, геометрической и аналитической техники в дифференциальных уравнениях с частными производными, связанной с многогранником Ньютона символа оператора. Более элементарная первая часть книги, посвященная многоугольнику Ньютона (гл. I—IV), содержит, тем не менее, законченные результаты и ориентирована на широкий круг читателей. Вторая часть (гл. IV-VII), посвященная многограннику Ньютона, содержит более сложные конструкции.
В центре внимания в книге три задачи о дифференциальных уравнениях: специальный класс гипоэллиптических операторов, определяемый по многограннику Ньютона, обобщенные операторы главного типа, которые определяются с помощью старшей части, ассоциированной с многогранником Ньютона, и энергетические оценки в задаче Коши, в которых также существенную роль играет многогранник Ньютона.
Для специалистов по дифференциальным уравнениям в частных производных. Книга доступна математикам — аспирантам и студентам старших курсов.

Метод многогранника Ньютона в теории дифференциальных уравнений в частных производных, Волевич Л.Р., Гиндикин С.Г., 2002
Скачать и читать Метод многогранника Ньютона в теории дифференциальных уравнений в частных производных, Волевич Л.Р., Гиндикин С.Г., 2002
 

Смешанная задача для дифференциальных уравнений в частных производных с квазиоднородной старшей частью, Волевич Л.Р., Гиндикин С.Г., 1999

Смешанная задача для дифференциальных уравнений в частных производных с квазиоднородной старшей частью, Волевич Л.Р., Гиндикин С.Г., 1999.

  В книге развивается аппарат энергетических оценок для эволюционных операторов высокого порядка. Этот аппарат позволяет дать единое изложение смешанной задачи для строго гиперболических и параболических по Петровскому дифференциальных уравнений с переменными коэффициентами. Этот же метод позволяет одновременно указанными классическими уравнениями рассмотреть новый нетрадиционный класс q-гиперболических уравнений.
Для специалистов но дифференциальным уравнениям в частных производных и математической физике. Книга доступна математикам - аспирантам и студентам старших курсов.

Смешанная задача для дифференциальных уравнений в частных производных с квазиоднородной старшей частью, Волевич Л.Р., Гиндикин С.Г., 1999
Скачать и читать Смешанная задача для дифференциальных уравнений в частных производных с квазиоднородной старшей частью, Волевич Л.Р., Гиндикин С.Г., 1999