Задачи Санкт-Петербургской олимпиады школьников по математике 2020 года, Кохась К.П., Ростовский Д.А., Храбров А.И., 2021.
Книга предназначена для школьников, учителей, преподавателей математических кружков и просто любителей математики. Читатель найдет в ней задачи Санкт-Петербургской олимпиады школьников по математике 2020 года. Все задачи приведены с подробными решениями, условия и решения геометрических задач сопровождаются рисунками. В качестве дополнительного материала приводятся три сказки о приключениях Бусеньки: в первой Бусенька изучает оптические свойства питона, попутно изобретая способ графического решения произвольных полиномиальных уравнений, во второй она помогает коллеге Спрудлю узнать, имеются ли в его магазине неиспорченные товары, а в третьей рассказывает об основах теории нечетких множеств.
Ростовский
Задачи Санкт-Петербургской олимпиады школьников по математике 2020 года, Кохась К.П., Ростовский Д.А., Храбров А.И., 2021
Скачать и читать Задачи Санкт-Петербургской олимпиады школьников по математике 2020 года, Кохась К.П., Ростовский Д.А., Храбров А.И., 2021Задачи Санкт-Петербургской олимпиады школьников по математике 2017 года, Кохась К.П., Берлов С.Л., Петров Ф.В., Ростовский Д.А., Солынин А.А., Храбров А.И., 2018
Задачи Санкт-Петербургской олимпиады школьников по математике 2017 года, Кохась К.П., Берлов С.Л., Петров Ф.В., Ростовский Д.А., Солынин А.А., Храбров А.И., 2018.
Книга предназначена для школьников, учителей, преподавателей математических кружков и просто любителей математики. Читатель найдет в ней задачи Санкт-Петербургской олимпиады школьников по математике 2017 года, а также открытой олимпиады ФМЛ № 239, которая, не будучи туром Санкт-Петербургской олимпиады, по характеру задач, составу участников и месту проведения является прекрасным дополнением к ней. Все задачи приведены с подробными решениями, условия и решения геометрических задач сопровождаются рисунками. В качестве дополнительного материала приводится отчет об олимпиаде «Туймаада-2016», большая подборка задач об угадывании цвета своей шляпы и сказка, поясняющая полезность кванторов.
Скачать и читать Задачи Санкт-Петербургской олимпиады школьников по математике 2017 года, Кохась К.П., Берлов С.Л., Петров Ф.В., Ростовский Д.А., Солынин А.А., Храбров А.И., 2018Книга предназначена для школьников, учителей, преподавателей математических кружков и просто любителей математики. Читатель найдет в ней задачи Санкт-Петербургской олимпиады школьников по математике 2017 года, а также открытой олимпиады ФМЛ № 239, которая, не будучи туром Санкт-Петербургской олимпиады, по характеру задач, составу участников и месту проведения является прекрасным дополнением к ней. Все задачи приведены с подробными решениями, условия и решения геометрических задач сопровождаются рисунками. В качестве дополнительного материала приводится отчет об олимпиаде «Туймаада-2016», большая подборка задач об угадывании цвета своей шляпы и сказка, поясняющая полезность кванторов.
Внешнеэкономическая деятельность, Ростовский Ю.М., Гречков В.Ю., 2008
Внешнеэкономическая деятельность, Ростовский Ю.М., Гречков В.Ю., 2008.
Внешнеэкономическая деятельность - чрезвычайно сложная, комплексная организаторская и управленческая деятельность, требующая обширных глубоких знаний. Для успешной работы на зарубежных рынках требуется профессиональное изучение специфики внешнеторговой работы.
Важную цель учебника авторы видят в том, чтобы помочь участникам ВЭД расширить их специальные знания в этой области. Вероятно, какие-то разделы работы привлекут внимание предпринимателей, коммерсантов, практически участвующих в ВЭД либо намеренных включиться в этот вид деятельности, а также работников соответствующих государственных органов и общественных организаций.
Скачать и читать Внешнеэкономическая деятельность, Ростовский Ю.М., Гречков В.Ю., 2008Внешнеэкономическая деятельность - чрезвычайно сложная, комплексная организаторская и управленческая деятельность, требующая обширных глубоких знаний. Для успешной работы на зарубежных рынках требуется профессиональное изучение специфики внешнеторговой работы.
Важную цель учебника авторы видят в том, чтобы помочь участникам ВЭД расширить их специальные знания в этой области. Вероятно, какие-то разделы работы привлекут внимание предпринимателей, коммерсантов, практически участвующих в ВЭД либо намеренных включиться в этот вид деятельности, а также работников соответствующих государственных органов и общественных организаций.