Справочник предназначен для учащихся средних школ и средних специальных учебных заведений. Он содержит все необходимые определения, формулы, теоремы и методы решения задач. В него включены, помимо классических разделов элементарной математики, такие разделы, как элементы теории множеств, комплексные числа, основы математического анализа и векторной алгебры, метод координат и т. д. Материал, излагаемый в справочнике, в основном носит теоретический характер. Новое издание справочника (второе выходило в 1981 г.); дополнено разделами, которые внедряются в школьное обучение. К ним, в частности, относится теория вероятностей.
алгоритм Евклида
Справочник по математике для средних учебных заведений, Цыпкин А.Г., 1983
Справочник по математике для средних учебных заведений, Цыпкин А.Г., 1983
Справочник предназначен для учащихся средних школ и средних специальных учебных заведений. Он содержит все необходимые определения, формулы, теоремы и методы решения задач. В него включены, помимо классических разделов элементарной математики, такие разделы, как элементы теории множеств, комплексные числа, основы математического анализа и векторной алгебры, метод координат и т. д. Материал, излагаемый в справочнике, в основном носит теоретический характер. Новое издание справочника (второе выходило в 1981 г.); дополнено разделами, которые внедряются в школьное обучение. К ним, в частности, относится теория вероятностей.
Скачать и читать Справочник по математике для средних учебных заведений, Цыпкин А.Г., 1983Справочник предназначен для учащихся средних школ и средних специальных учебных заведений. Он содержит все необходимые определения, формулы, теоремы и методы решения задач. В него включены, помимо классических разделов элементарной математики, такие разделы, как элементы теории множеств, комплексные числа, основы математического анализа и векторной алгебры, метод координат и т. д. Материал, излагаемый в справочнике, в основном носит теоретический характер. Новое издание справочника (второе выходило в 1981 г.); дополнено разделами, которые внедряются в школьное обучение. К ним, в частности, относится теория вероятностей.
Задачи по алгебре, арифметике и анализу, Прасолов В.В., 2007
Название: Задачи по алгебре, арифметике и анализу.
Автор: Прасолов В.В.
2007
В книгу включены задачи по алгебре, арифметике и анализу, относящиеся к школьной программе, но, в основном, несколько повышенного уровня по сравнению с обычными школьными задачами. Есть также некоторое количество весьма трудных задач, предназначенных для учащихся математических классов. Сборник содержит более 1000 задач с полными решениями.
Для школьников, преподавателей математики, руководителей математических кружков, студентов пединститутов.
Скачать и читать Задачи по алгебре, арифметике и анализу, Прасолов В.В., 2007Автор: Прасолов В.В.
2007
В книгу включены задачи по алгебре, арифметике и анализу, относящиеся к школьной программе, но, в основном, несколько повышенного уровня по сравнению с обычными школьными задачами. Есть также некоторое количество весьма трудных задач, предназначенных для учащихся математических классов. Сборник содержит более 1000 задач с полными решениями.
Для школьников, преподавателей математики, руководителей математических кружков, студентов пединститутов.
Современная элементарная алгебра в задачах и решениях, Гашков С.Б., 2006
Название: Современная элементарная алгебра в задачах и решениях.
Автор: Гашков С.Б.
2006
Эта книга представляет собой учебное пособие по алгебре для учащихся 10–11 классов математических школ, содержащее многочисленные задачи и упражнения. Её основу составили лекции, читавшиеся автором в ФМШ МГУ.
Книга может представлять интерес также для преподавателей математики, студентов и для всех интересующихся математикой.
Скачать и читать Современная элементарная алгебра в задачах и решениях, Гашков С.Б., 2006Автор: Гашков С.Б.
2006
Эта книга представляет собой учебное пособие по алгебре для учащихся 10–11 классов математических школ, содержащее многочисленные задачи и упражнения. Её основу составили лекции, читавшиеся автором в ФМШ МГУ.
Книга может представлять интерес также для преподавателей математики, студентов и для всех интересующихся математикой.
Теория чисел, Нестеренко
Название: Теория чисел. 2008.
Автор: Нестеренко Ю.В.
Основу учебника составляют результаты элементарной теории чисел, сформировавшейся в трудах классиков — Ферма, Эйлера, Гаусса и др. Обзорно освещены свойства простых чисел, теория диофантовых уравнений, алгоритмические аспекты теории чисел с применениями в криптографии (проверка больших простых чисел на простоту, разложение больших чисел на множители, дискретное логарифмирование) и с использованием ЭВМ.
Для студентов высших учебных заведений.
Скачать и читать Теория чисел, НестеренкоАвтор: Нестеренко Ю.В.
Основу учебника составляют результаты элементарной теории чисел, сформировавшейся в трудах классиков — Ферма, Эйлера, Гаусса и др. Обзорно освещены свойства простых чисел, теория диофантовых уравнений, алгоритмические аспекты теории чисел с применениями в криптографии (проверка больших простых чисел на простоту, разложение больших чисел на множители, дискретное логарифмирование) и с использованием ЭВМ.
Для студентов высших учебных заведений.
Теория чисел - Нестеренко Ю.В.
Название: Теория чисел. 2008.
Автор: Нестеренко Ю.В.
Основу учебника составляют результаты элементарной теории чисел, сформировавшейся в трудах классиков - Ферма, Эйлера, Гаусса и др. Рассматриваются такие вопросы как простые и составные числа, арифметические функции, теория сравнений, первообразные корни и индексы, цепные дроби, алгебраические и трансцендентные числа. Обзорно освещены свойства простых чисел, теория диофантовых уравнений, алгоритмические аспекты теории чисел с применениями в криптографии (проверка больших простых чисел на простоту, разложение больших чисел на множители, дискретное логарифмирование) и с использованием ЭВМ.
Для студентов высших учебных заведений.
Скачать и читать Теория чисел - Нестеренко Ю.В.Автор: Нестеренко Ю.В.
Основу учебника составляют результаты элементарной теории чисел, сформировавшейся в трудах классиков - Ферма, Эйлера, Гаусса и др. Рассматриваются такие вопросы как простые и составные числа, арифметические функции, теория сравнений, первообразные корни и индексы, цепные дроби, алгебраические и трансцендентные числа. Обзорно освещены свойства простых чисел, теория диофантовых уравнений, алгоритмические аспекты теории чисел с применениями в криптографии (проверка больших простых чисел на простоту, разложение больших чисел на множители, дискретное логарифмирование) и с использованием ЭВМ.
Для студентов высших учебных заведений.